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Renormalization theory of stochastic growth

Matthew B. Hastings
Department of Physics, Massachussetts Institute of Technology 12-134d, 77 Massachusetts Avenue,

Cambridge, Massachusetts 02139
~Received 14 February 1996; revised manuscript received 10 July 1996!

An analytical renormalization-group treatment is presented of a model that, for one value of parameters, is
equivalent to diffusion-limited aggregation~DLA !. The fractal dimension of DLA is computed to be
221/211/551.7. Higher multifractal exponents are also calculated and found to be in agreement with nu-
merical results. It may be possible to use this technique to describe the dielectric breakdown model as well,
which is given by different parameter values.@S1063-651X~97!03901-9#

PACS number~s!: 64.60.Ak, 05.20.2y, 68.70.1w, 61.43.Hv
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I. INTRODUCTION AND NOTATION

A. Introduction

Diffusion-limited aggregation~DLA ! is a model for
growth of a cluster@1#, by the accretion of random walker
These random walkers arrive from infinity and stick wh
they contact the cluster. After a walker sticks to the clus
the next walker is released from infinity. This process giv
rise to fractal patterns. Due to the mathematical equivale
of random walks and potential theory, this procedure
equivalent to solving Laplace’s equation outside the bou
ary of the aggregate, setting the potential zero on the ag
gate and constant at infinity, and picking a point on the s
face of the aggregate to add the walker with a probabi
proportional to the local field strength; this field strength m
be thought of as an ‘‘electric field.’’

There has been much numerical work on DLA in tw
dimensions, where the fractal dimension has been de
mined to be 1.71 @2#. Mean-field calculations predic
D55/3 @3#, which indicates that, in two dimensions, som
thing is lacking in the mean-field approach. In higher dime
sions the mean-field theory appears much more accu
One first-principles renormalization theory, based on
branching nature of DLA processes, obtained the result
D51.661@4#.

Another important analytic result was the derivation
the electrostatic scaling law, which appears to be obe
numerically by the aggregates@5#. This law is used as an
essential step in the calculation of this paper.

Recently, another formulation of DLA was propose
based completely on conformal mappings@6#. A conformal
function mapped the unit circle onto the boundary of t
aggregate. In this formulation of the problem, the elect
static scaling law followed almost automatically when co
sidering the behavior of the first Fourier component of
mapping. We investigated numerically the problem of t
importance of different Fourier components of the mappi
It appeared that by directly simulating the dynamics of o
the first few Fourier components, results could be obtai
for short growth periods that were similar to those when
full function was used. This suggested that it might be p
sible to develop a renormalization theory based on integ
ing out higher Fourier components, using techniques sim
to those used in field theory.
551063-651X/97/55~1!/135~18!/$10.00
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Also, by comparing a picture of the cluster generated
keeping only some small number of terms in the Four
expansion of the mapping to a picture generated by the
mapping, it appeared that the finite number of terms gav
good description of the boundary of the object. It did n
accurately describe the exact microscopic structure of
growth tips and did not correctly describe the structure
portions of the object far from the growth region, that
deep in the inside of the object. However, one would exp
that the microscopic structure is not too important and t
the description of regions where there is little probability
growth is also not important.

Figure 1 shows a picture of the cluster that results fr
the conformal mapping model. The envelope surrounding
cluster was generated from the first 40 terms of the Four
series expansion of the mapping used to generate the
cluster.

For longer time periods, more terms in the Fourier ser
were needed, but this is only to be expected; if only one te
were kept in the Fourier series the object would be a cir
and would grow with a radius proportional to the square r

FIG. 1. Picture of a cluster grown using conformal grow
model.
135 © 1997 The American Physical Society
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136 55MATTHEW B. HASTINGS
of time. As more terms are kept, the object can grow fas
than the square root of time by changing shape, but for
given number of terms, eventually the growth will be as t
square root of time. Therefore, it is expected that in
renormalization group~RG! that follows there will be some
cutoff in the number of terms kept, which increases with
size of the object.

The above discussion is intended to motivate the RG
follows. Most of the discussion is done in more detail in R
@6#.

Hope that such a scheme would work was provided
numerical evidence that the conserved quantities~the mo-
ments! of the continuum growth law were very nearly co
served by the random growth process@7#. For the lowest
Fourier coefficients, one would expect that the rand
growth would be close to the average growth determined
the continuum law, while the higher Fourier coefficien
would fluctuate more wildly.

The paper is divided into several parts. First, the conf
mal mapping model for DLA is discussed and used to der
continuum equations for growth, essentially equivalent to
Shraiman-Bensimon equation for the Hele-Shaw prob
@8#. These equations are heuristically modified to add
essential differences between DLA and its continuum lim
the presence of noise and the existence of a microsc
cutoff. This leads to a model that is hoped to be in the sa
universality class as DLA. Even if it is not in the same un
versality class, it is similar enough to be of interest in itse

Second, under an adiabatic assumption, the equatio
modified to vastly simplify the time dependence, leaving
most a static problem. The adiabatic assumption makes
sible the RG and perturbation theory calculations descri
latter in the paper. The adiabatic assumption is justified
numerics and self-consistently by the RG itself. At this poi
before doing the RG, it is still possible to make some co
parison to numerics based on the continuum representa
of DLA.

Third, a perturbation theory is developed for the co
tinuum equation, with a well-defined set of rules for calc
lating correlation functions. The perturbation theory requi
some resummation of diagrams, where to calculate
summed propagators it is necessary to use a renormaliza
group approach. This RG forms the fourth part of the pap
the calculations for the RG have only been done to low
order, producing an appropriate renormalized propagator
vertex. Fifth, the adiabatic assumption is removed and
renormalized propagator is used to calculate various ex
nents in the theory. Sixth, the results are compared to
merical experiments, the self-consistency of the approac
discussed, and there is discussion of what may happen i
computation is performed to higher orders.

Unfortunately, there are some disadvantages to the t
niques used in this paper. After performing the RG, a sm
dimensionless parameter appears, equal to 1/5. Expansi
carried out order by order in this paperameter. This sugg
that the theory presented below is close to some trivial fi
point at which the coupling would vanish; it is possible th
the trivial fixed point may be found by varying a parame
a to be defined below. Since the RG has not as yet b
carried out for all values ofa, the existence of the trivia
fixed point is not yet verified and thus the nature of t
r
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perturbation expansion is somewhat unclear.
In addition, the perturbation expansion that will be use

although looking very similar to those used in field theo
cannot be derived from a functional integral in any simp
fashion. This means that there may exist some doubt ab
the validity of field theory techniques in this problem an
certain questions about the renormalization of quantities s
as noise and interaction. On the other hand, the major ad
tage of the theory is that, by dealing directly with an analy
function describing the envelope of the cluster, it provide
very natural means of defining different scales in the pr
lem and of coarse graining a cluster while only sligh
modifying the solution of Laplace’s equation outside t
cluster.

B. Notation

A large number of functions will need to be defined
this paper. As much as possible, I will use the followin
notations. Capital letters are used for functions, such
F,G to be defined latter, which describe the shape of a s
cific growing aggregate. Power series expansions of th
functions will be denoted by subscripts, s
F(z)5F1z

11F0z
01F21z

211•••. In the continuum limit
of these power-series expansions, to be appropriately defi
latter, where sums are approximated by integrals, the l
letters j ,k,l ,m,n,o will be used as indices. One will se
terms such asG( j ). Greek letterse,L,m will be used for
ultraviolet and infrared cutoffs in these continuum law
Greek lettersa,l0 will be used for various parameters in th
models defined in this paper. Lowercase letters will be u
for functions that define growth rules for the aggrega
These include the functionsf ,s,t defined latter. Latin letters
x,z represent points in the complex plane. The lettert repre-
sents time, either as a discrete number of steps or as a
number in a continuum limit. The numbersu,f represent
angles, while the functionu( j ) is the step function. Unless
otherwise specified, subscripts attached to functions will
used to denote derivatives; thusFx is the derivative ofF
with respect tox. As an exception to this, the expressio
f l,u(z) will represent a function parametrized byl andu.

II. CONFORMAL MODEL
AND CONTINUUM GROWTH LAW

A model for growth is defined. From this model, th
Shraiman-Bensimon equation is derived for a functionF that
maps the unit circle in the complex plane onto the bound
of the growing object. Defining

G5
1

Fz
~1!

and making some approximations, we obtain a continu
growth rule@Eq. ~32!# that still includes effects of noise an
finite cutoff.

A. Conformal model

The following model for DLA in terms of conforma
mappings leads to results that are apparently numeric
equivalent to DLA@6#. It should be noted that the RG in thi
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55 137RENORMALIZATION THEORY OF STOCHASTIC GROWTH
paper relies upon a continuum approximation to this mod
this continuum approximation could also have been obtai
from the lattice version of DLA without reference to th
conformal mapping model, but the conformal mappi
model provides a better justification for the continuum eq
tion.

In this method, we deal only with the analytic functio
F, which is defined as the analytic function that maps
unit circle in the complex plane onto the boundary of t
growing cluster. We introduce two parametersa and l0,
wherea52 corresponds to DLA andl0 is some constan
determining the size of an individual random walker. T
grow the object, first pick a random pointx5eiu on the unit
circle. Then calculateFz(x), which is the derivative ofF at
this point. We define

l5l0„Fz~x!Fz* ~x!…2a/2. ~2!

The case ofa52 will correspond to DLA and it is tha
case that will be considered from now on; other cases wil
briefly discussed in the conclusion. Then, in a given grow
step,F(z) is replaced by

F„f l,u~z!…, ~3!

where f is a function that produces a small bump at an
u, with linear dimension of the bump of the order of th
square root ofl. l,u are parameters that define the functi
f . An explicit example off l,0 is given by

F11l

2z
~z11!S z111Az21122z

12l

11l D 21G1/2z1/2.
~4!

For uÞ0, we havef l,u(z)5eiu f l,0(e
2 iuz).

In the small-l case,f reduces to

z1lz~z1eiu!/~z2eiu! ~5!

and by averaging over angle we may determine a continu
growth law. A picture of a cluster produced by this grow
rule is shown in Fig. 1. A picture of the effect of the mappi
f on the unit circle is shown in Fig. 2.

B. Continuum growth law

The continuum growth law for DLA is known to b
equivalent to the Hele-Shaw dynamics, which obeys the

Im~FtFf* !51, ~6!

FIG. 2. Illustration of effect off on the unit circle.
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whereF is a function that maps the unit circle in the com
plex plane onto the boundary of the aggregate and subsc
denote derivates with respect to time or to anglef on the
circle. This law may be rewritten as

Re~Ft /zFz!51/~FzFz* !,
~7!

ReS Ft

uFzu
zFz

D51/uFzu,

wherez5eif. Finally, this second growth law may be rewri
ten as

Ft5FzE du

2p
@Fz~e

iu!Fz* ~eiu!#21z
z1eiu

z2eiu
. ~8!

This equation, the Shraiman-Bensimon equation, res
from substituting the small-l expansion of Eq.~5! into the
equation~3! for the dynamics ofF, whereF„f (z)… is ap-
proximated byF(z)1Fz(z)@ f (z)2z#.

In the Shraiman-Bensimon equation, one may divide b
sides byzFz and then take the real part of both sides. Th
will recover Eq. ~7! and show that the two equations a
equivalent. Equation~7! implies that the normal velocity o
the surface at a given point is proportional to the local el
tric field at that point.

Equation~5! may be rewritten as~taking u50 for sim-
plicity!

z1lz~z11!/~z21!5z1lz~112/z12/z212/z31••• !.
~9!

Therefore, the effect of the integration over angle in the c
tinuum growth law is to project out negative Fourier comp
nents inl considered as a function of angle. The factor o
difference between the zeroth component and all other c
ponents will be important later.

It will also be useful to define a continuum law for an
other functionG, which is defined by Eq.~1!. This function
has several advantages. The equation forl then becomes

l5l0G~x!G* ~x!, ~10!

which has a simpler form than Eq.~2!. This has a physica
interpretation thatG determines the strength of the electr
field at pointx. Also,G is the derivative of the inverse func
tion of F and the inverse function ofF has a more natura
growth rule thanF does. That is, ifF21

„F(z)…5z, then un-
der a growth step with givenl andx, the functionF21(z)
changes intof21

„F21(z)…. The continuum law forG, as
obtained by using the definition ofG and the growth law for
F, is

Gt5GzE du

2p
G~eiu!G* ~eiu!z~z1eiu!/~z2eiu!,

~11!

2GE du

2p
G~eiu!G* ~eiu!@z~z1eiu!/~z2eiu!#z .

It is also useful to consider the continuum growth laws
the power series ofF andG(z). Writing
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138 55MATTHEW B. HASTINGS
F~z!5F1z
11F0z

01F21z
211•••, ~12!

G~z!5G0z
01G21z

211G22z
221•••, ~13!

then Eq.~11! is equivalent to

~G2 j ! t5~ j22k21! (
k,l ,m

G2kG2 lG2m* d~k1 l2m2 j !

32u~ j2k!, ~14!

where the discrete step function is defined by

u~ j2k!5H 1 for j.k

1/2 for j5k

0 for j,k.
~15!

An continuum equation may also be written for the pow
series expansion ofF, but we will not need to use such a
equation.

There are some problems with directly applying the co
tinuum growth law above, in any of its forms, to the discre
random process that defines DLA. The continuum law le
to the appearance of cusps in the contour of the cluster a
a finite time and the continuum law is deterministic while t
discrete law is random. However, the continuum law m
have some applicability to the discrete cluster growth
cause, for example, the conserved quantities of the c
tinuum law are approximately conserved by the random p
cess@7#. Thus we will try, in the rest of this section, t
correct the problems in the continuum law so that it may
of some use in describing the discrete, random growth p
cess.

C. Ultraviolet cutoff

The above formulation of the problem suggests a meth
outlined in this section, of inserting an ultraviolet cutoff in
the growth law. This cutoff will be inserted by hand and th
the parameter of the cutoff will be adjusted to obtain t
correct microscopic scale.

In the discrete conformal mapping model,F never devel-
ops cusps becausef is always well behaved. The specifi
form of f does not matter; all that matters is that the appro
mate expansion for f given by f (x)5z1lz(112/z
12/z21•••) is only correct for small negative powers o
z. The power-series expansion off is cut off at some point
becausef is well behaved. This cutoff depends onl, which
itself depends on the angleu at which growth is taking place
The approximation made in inserting the ultraviolet cut
into the continuum law is that the cutoff in the power-ser
expansion forf depends only the average value ofl over the
circle at the time of a given growth step and not on the ex
value ofl where the growth is occurring, where the depe
dence on the average value ofl is chosen in such a way a
to produce the correct microscopic scale in the DLA grow
process.

Then a simplification follows. Suppose the regulariz
form of f is chosen to be
-
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f ~z!l,u5z1zl
~11e!z1eiu

~11e!z2eiu
, ~16!

wheree is a fixed function of̂ l&, which is defined to be the
average value ofl over the entire circle.

It is worthwhile also to define

L51/e. ~17!

ThenL represents the highest power ofz that will occur in
the growth law.

Let us make a change of variable. We will replaceF(z)
by the functionF„(11e)21z… andG(z) by G„(11e)21z….
At the same timef is replaced by (11e) f „(11e)21z…. Then
the continuum law~8! for F becomes

Ft5FzE du

2p
@Fz„~11e!eiu…Fz* „~11e!eiu…#21z

z1eiu

z2eiu
,

~18!

where now the cutoff dependence has been moved to
derivatives ofF. The continuum law~11! for G becomes

Gt5GzE du

2p
G„~11e!eiu…G* „~11e!eiu…

3z~z1eiu!/~z2eiu!,

~19!

2GE du

2p
G„~11e!eiu…G* „~11e!eiu…

3@z~z1eiu!/~z2eiu!#z .

The value ofe must now be calculated.
Before the averaging process, the dependence of the

off on l is easy to determine by, for example, expanding
function f as defined by Eq.~4!. After the averaging process
it is not necessarily the case that the average cutoffe will be
determined in the same way from the average value ofl.
The averaging may introduce nontrivial behavior. Instea
will look for the dependence ofe on the cluster size; since
the cluster size and the average ofl are related, this is an
equivalent procedure.

Expanding the cutoff in the continuum growth law to lin
ear order ine yields an additional term in the equation fo
Ft . This additional term changes Eq.~7! to

ReS Ft

uFzu
zFz

D51/uFzu22e ReS zFzz
FzuFzu

D . ~20!

The additional term may be written as

2eImS Fff

FfuFfu D5 2e/R, ~21!

wherez5eif andR is the local radius of curvature. This is
surface tension term.

The basic idea will be to adjuste to produce the correc
size for microscopic features; this size is the size of an in
vidual walker in the lattice formulation of DLA. A dimen
sional analysis argument may help understand the size o
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55 139RENORMALIZATION THEORY OF STOCHASTIC GROWTH
cutoff. This dimensional analysis argument will relate t
dependence of the cutoff on a macroscale to the depend
of the cutoff on a microscale.

The function F(z) may be assigned the dimension
length andz may be made dimensionless. This means t
we are interpretingz as a parametrization of the cluster. Th
bothL ande are dimensionless. We know thatL must be a
function of the size of an individual walker, but then sin
the dimensional argument implies thatL is dimensionless,
L must be proportional to some power of the ratio of the s
of the object to the size of an individual walker, as this is t
only way to form a dimensionless number. Letr 0 denote the
length scale of an individual walker.

Let us see how to measure the linear size of the obj
Recalling the expansion ofF in Fourier coefficients given by
Eq. ~12!, by a theorem on univalent functions@9# the size of
the object is at most 4 timesF1, the leading term of the
power series. Asymptotically,F1 will measure the size of the
object.

To fix the minimum radius of curvature atr 0, the size of
an individual walker, the cutoffe must be chosen so tha
e/R, the surface tension term, balances the electric field
the given radius. To determine the radius at which they b
ance, we need to make an assumption about the singula
of G. Let us assumeG has simple poles and thereforeFz has
simple zeros. Suppose we look at points near a zero ofFz .
Without loss of generality, take this zero to be at pointz0,
where z0512d, with d some small positive number. Lo
cally we find

Fz}z2z0 . ~22!

The electric field atz51 is proportional to 1/d. The radius of
curvature atz51 is proportional to 1/d2. For the surface
tension to balance the electric field we require

1/d5e/d2. ~23!

This implies thatd5e. Then, sinceR51/d2, we need that
e5AR. If R5r 0, we find

e}r 0
1/2. ~24!

The dimensional argument then implies thate
}(r 0 /F1)

1/2, where now the proportionality constant is d
mensionless. This implies that

L}~F1 /r 0!
1/2. ~25!

In the actual growth,F1 is changing in time, butr 0 is con-
stant. Thus the time dependence ofL is determined byL
}F1

1/2. As expected, the cutoff is increasing in time. If th
power-series expansion forG is defined by Eq.~13!, then

G051/F1 , ~26!

so that it is also possible to measure the size of the ob
using the power-series expansion ofG.

As a further explanation of the dimensional analysis ar
ment, it may be directly shown that if the cluster is appro
ce

t

e
e

t.

at
l-
ies

ct

-
-

mately circular with a small bump on it, then the dependen
of L on the cluster size is correctly given by Eq.~25!. The
approximate circularity means that instead of simply stat
that the electric field is proportional to 1/d and the radius of
curvature is proportional to 1/d2, we keep track of the pro-
portionality constants in terms ofF1 and then directly show
that e}(r 0 /F1)

1/2. The advantage of the dimensional arg
ment is that it is possible to make this argument without a
assumptions on the macroscale of the cluster; the de
dence ofL on r 0 follows from microscopic consideration
and the dimensional analysis argument then yields the
pendence onF1.

One might worry that for the actual aggregate the po
will not necessarily be simple poles. As Halseyet al. have
shown@10#, the surface is described by wedges with a no
zero opening angle and the singularities exist on a fractal
However, the continuum growth law of Eq.~11! produces
only simple poles inG. It is only the dynamics that lead
apparently to the creation of nonsimple poles, via an ac
mulation of simple poles. Therefore, the cutoff will be im
posed as if the poles were simple.

Because the object grows,L increases with time. This is
what leads to nontrivial dynamics and to a fractal dimens
less than 2. If instead of varying with time the cutoffL were
held constant, then the aggregate would asymptotically g
at aL-dependent rate proportional to the square root of ti
and would have a fractal dimension of 2.

D. Noise

From now on,G will be the function of interest andF
will be ignored. There are two reasons for this: the co
tinuum law forG is simpler and noise may be more eas
inserted into the law forG. The actual growth ofG is not
deterministic; we may write the actual growth ofG symboli-
cally as follows: actual growth ofG 5 continuum growth of
G 1 ~actual growth ofG 2 continuum growth ofG). The
term in parenthesis represents noise. This noise term wil
written as

sGf~z!, ~27!

wheres is a constant with dimensions of inverse time a
Gf is some function ofz. We approximate thatGf vanishes
on average. If we expandGf in a series as
G21

f z211G22
f z221•••, we will write the average of

Gi
fGj

f* as

^Gi
fGj

f* &5d i j N~ j !, ~28!

whereN is some unspecified function. We will also assum
that any average of severalGf can be written as a product o
pairwise averages. These are the essential approximatio
the noise.

With noise included, we modify Eq.~19! to
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140 55MATTHEW B. HASTINGS
Gt5GzE du

2p
G„~11e!eiu…G* „~11e!eiu…

3z~z1eiu!/~z2eiu!,
~29!

2GE du

2p
G„~11e!eiu…G* „~11e!eiu…

3@z~z1eiu!/~z2eiu!#z1sGf~z!.

The notationGf is used for the noise because, in the pert
bation theory, the functionGf will play a role similar to a
free field in field theory.

The approximations are justified for two reasons. Sin
the noise is essentially generated by the dynamics, that
small amount of noise will be amplified by the continuu
growth, the dynamics should not be very sensitive to how
noise is inserted. This means that we need not worry ab
the exact form ofN( j ). Second, since the actual growth la
for F21 is rather simple, involving a function acting o
F21, it is most natural to insert the noise intoF21, or into
G, which is the derivative ofF21. Inserting the noise into
the growth law forF, which has a more complicated grow
law, may have a different effect on the overall dynamics

E. Continuum limit in momentum space

In order to make the RG calculations easier, I will al
take a continuum limit for the Fourier components ofG and
Gf . This will result in replacing the discrete sums of Eq.~14!
with integrals. This amounts to a change in the geometry
the growth; instead of parametrizing the boundary of
growing cluster by a point on the unit circle, we will param
etrize it by a point on the real line in the complex plane.

In the neighborhood of a given point on the unit circ
such asz51, the unit circle is locally approximated by
straight line. As we look at shorter and shorter length sca
this approximation becomes more and more accurate.
equationz5eiu is approximated byz511 iu. Thus, on short
scales, in the neighborhood ofz51 we can approximate

F~z!5F1z
11F0z

01F21z
211•••

'F1~11 iu!1F01E d jF~ j !e2 i j u, ~30!

G~z!5G0z
01G21z

211G22z
221•••

'G01E d jG~ j !e2 i j u, ~31!

whereF( j ) andG( j ) should be considered as being defin
by the above equations. They are defined so thatj is always
a positive quantity. This approximate form forG(z) will
break down foru of the order of 1 rad. This implies that th
Fourier expansions will break down for low values ofj . This
has the effect of an infrared cutoff; the cutoff will be atj of
order m, which is a number of order 1. The cutoffm is
constant in time, unlikeL, but under the RG we will find it
convenient to rescalem. After introducing the equation o
motion appropriate to this approximate expression forG I
will then explain the effect of nonzerom on this equation.
-

e
, a

e
ut

f
e

,

s,
he

The symbolj in Eqs.~30! and~31! will be referred to as
a momentum since it will play a role in the perturbatio
theory of Sec. III equivalent to that of a momentum in
perturbation theory for a field theory. We take Eq.~14! and
transcribe it to this continuum approximation. Noise is add
as in Eq.~29!. The result is

Gt~ j !5~1/m!E dkt~ j ,k!G~k!E E dldmG~ l !G* ~m!exp

3@2~ l1m!/L#d~k1 l2m2 j !2u~ j2k!1sGf~ j !,

~32!

wheret( j ,k) is some general function@initially it is propor-
tional to j22k21 as in Eq.~14!# and the factor of 1/m is
inserted to produce the correct dimensions fort in the RG, as
will be clear later. The insertion of the factor of 1/m simply
amounts to a redefinition oft( j ,k). The functiont will flow
under the renormalization group. The exponential term is
appropriate version of the ultraviolet cutoff in the continuu
limit. We define the continuous step functionu with by the
same equation~15!.

The effect of the cutoffm is twofold: thed function in Eq.
~32! has a nonzero width of orderm and hence a finite
height. The quantityd(0) is of order 1/m. Also in the defi-
nition of the noise, Eq.~28! is replaced by

^Gf~ i !Gf* ~ j !&5d~ i2 j !N~ j !, ~33!

where again thed function has a nonzero width.
By rescaling momentum, the cutoffsm and L may be

changed, but the ratio of the two cutoffs will remain co
stant. The purpose of the RG will be to integrate the up
cutoff fromL to L2dL. Then, for the sake of convenienc
the upper cutoff will be rescaled back toL. The assumption
is made that whenL is much greater thanm this renormal-
ization does not change the essential physics of the syst

Physically, Eq. ~32! describes the problem of DLA
growth in the upper half of the complex plane, where t
boundary of the growth is parametrized by a pointu on the
real axis. The cutoffm has the physical interpretation tha
growth only occurs in a finite width on this axis.

For use later, let us define a functionalŴ such that

Ŵ@ j ,G~k!,G~ l !,G* ~m!#

5~1/m!E dkt~ j ,k!G~k!E E dldmG~ l !G* ~m!

3exp@2~ l1m!/L#d~k1 l2m2 j !. ~34!

Thus the right-hand side of Eq. ~32! is
Ŵ@ j ,G(k),G( l ),G* (m)#1sGf( j ). The functionalŴ is lin-
ear in each of its last three arguments.

III. ADIABATIC ASSUMPTION
AND NUMERICAL PREDICTIONS

A. Adiabatic assumption

An important approximation is made, which changes
problem to one of describing an aggregate that is statistic
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55 141RENORMALIZATION THEORY OF STOCHASTIC GROWTH
unchanging in time. In the end, we will describe aggrega
whose average size and roughness remain constant.

The cutoffL is slowly changing in time. As the objec
grows,L changes more and more slowly. The exact struct
of the cluster at a given time depends upon its growth at
previous times, but since the object spends a long time gr
ing with an approximately fixed cutoff, it is expected that t
structure of the object at a given timet with resulting cutoff
L is determined only by its growth during previous tim
t8 with resulting cutoffsL8 such thatL8 is very close to
L. Timest8 such thatL8 is very different fromL will be so
far in the past that we do not expect them to alter the str
ture of the cluster.

Furthermore, if the cutoff is fixed, the equations of moti
are homogeneous, in the sense that up to a rescaling of
and noise, two clusters, which differ only by a change
scale, will have exactly the same growth for the same r
dom noise. More precisely, ifG(t) is a solution of Eq.~29!,
with fixed cutoffL and given noiseGf , then for any number
b, the functionbG(b2t) is a solution of Eq.~29! with the
same cutoffL and with noisebGf ands replaced byb2s.

For a large object it is then reasonable to make the a
batic assumption that, despite the changing cutoff, up t
rescaling of the cluster, the statistical properties of the fu
tionG at some given time with some given cutoffL are well
described by evolving an arbitrary initialG for a sufficiently
long time using the equations of motion with the cutoff he
fixed at that valueL. First, we will analyze the dynamics o
G in the fixed cutoff problem and then we will use the ad
batic assumption to relate it to the changing cutoff proble

Let us take Eq.~32! and, holding the cutoff fixed, make
dynamical rescaling of the functionG as it evolves under
this equation. After every time step of lengthdt we will
rescaleG to (12sdt)G. Then the rescaledG satisfies the
equation of motion

sG~ j !1Gt~ j !5~1/m!E dkt~ j ,k!G~k!E E dldmG~ l !G*

3~m!exp@2~ l1m!/L#d~k1 l2m2 j !

32u~ j2k!1sGf~ j !. ~35!

On average, the rescaledG has constant size.
The amount by which the cluster is rescaled per unit ti

s is the sames referred to in Sec. II D. It is simply a matte
of notational convenience to chose these two numberss to be
the same. Any other choice ofs in Sec. II D simply amounts
to a redefinition ofGf .

The functionG before rescaling is growing in time. T
determine how rapidly an unrescaled cluster of given s
and given, fixed cutoff grows, we may follow this procedu
Evolve a rescaled cluster using Eq.~35! with an s chosen
such that the rescaled cluster is of the desired size. T
from the value ofs needed to maintain the desired siz
determine the growth rate of the unrescaled cluster. For
unrescaled cluster, the average ofd log„G0(t)…/dt is equal
to s.

Under the adiabatic assumption, we can now take
growth rate for the fixed cutoff problem, this growth ra
being a function of the size of the cluster and the cutoff, a
use it to determine the growth rate for a cluster with a cha
ing cutoff. To determine the growth rate of a cluster of
s
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given size in the changing cutoff problem one can determ
the cutoff from the size of the cluster, using Eq.~25!, and
then calculate the growth rate of a cluster of the same siz
the fixed cutoff problem, using the rescaling trick to dete
mine how quickly that cluster grows.

Under RG scaling, in fact, we will find that the equatio
of motion changes in such a way thats changes; in fact,s
may acquire momentum dependence. Before RG scalins
will be negative, sinceF is increasing, causingG to de-
crease. After RG flow, an appropriate combination oft,s,
andGf goes to a universal value. The adiabatic assump
will mean that we assume that at every instant in the origi
DLA problem, the functionG is described by a function in
the long-time limit of the problem with a fixed cutoff and
rescaling terms, where s is picked to obtain the correc
overall scale forG.

On average,Gt in Eq. ~35! vanishes. What is left ofGt
after the rescaling process is just fluctuations about the a
age growth. There may in fact be solutions such thatGt
vanishes identically, but this is unimportant. In the RG, ev
with Gt nonzero, thes term and interaction term (G3 term!
will determine the nature of the aggregate. As will be show
under RG flow, theGt term flows under RG so that th
fluctuations inGt( j ) decrease asj decreases. The lower mo
mentum terms then, in the unrescaled problem, will ha
their growth more accurately given just by thesG term.
Fluctuations about this overall growth will be less.

B. Numerical predictions

It will be worthwhile to mention at this point that alread
some definite numerical predictions can be extracted fr
the above work. Since the RG that follows relies upon
continuum equations, it is good to independently check
validity of these equations for describing DLA.

If any RG is to hold, the coefficients ofG must obey
some scaling law. In Sec. VII such a scaling law will b
shown numerically. The coefficients decay with a power la
It will be the purpose of the RG to calculate this power la

Since the absolute value ofG is equal to the local electric
field, there is a close connection betweenG and the multi-
fractal exponents of Refs.@12–14#. These exponents are de
fined by Eqs.~69! and ~73!. The (2n11)th power of the
electric field, integrated over the object, is given
*du@G(u)G* (u)#n. This integral overu can be converted to
an integral over components ofG in momentum space. Cut
ting those off at momentaL is equivalent to cutting the rea
space integration off at a length scale of orderL22. Since
the multifractal exponents are defined in terms of the sca
of powers of the electric field against length, we obtain
equivalent definition of multifractal exponents in terms
scaling of powers ofG against the cutoff. This discussion o
exponents will be done in more detail later, after the R
permits us to calculate these exponents analytically.

As a check of the adiabatic assumption, a numerical sim
lation was performed using the original discrete conform
mapping model defined in Sec. I B. In this simulation, af
every growth step, the object was shrunk by some cons
factor. Visually, we could not see any difference, in t
growing region on the surface, between the cluster shr
after every growth step and another cluster that was



to

o
y
e
th
o

io
l-
tio
m

, in

in
.

ce

um
y

e

opa-
n

s to
s.
nt

ed
t

he

r-

nal-

142 55MATTHEW B. HASTINGS
shrunk. A calculation of the fractal dimension also failed
show any significant differences.

IV. PERTURBATION THEORY

A perturbation theory is developed for the equation
motion~35!. This permits, in principle, the calculation of an
correlation function of the theory in terms of noise averag
In practice, a resummation of the series is employed
expresses multipoint correlation functions in terms of tw
point correlation functions.

A. Perturbation rules

Using the adiabatic assumption, the equation of mot
~35! looks very much like the variation of an action. A
though there no such action can be found, a perturba
theory will be developed, based on this analogy, to per
the use of techniques from field theory.

This technique is very similar to that used, for example
solving the Navier-Stokes equation@15#. Such a perturbation
theory has been known for many years. Before proceed
with the details, let me summarize the essential attributes
perturbation theory is developed by expandingG in powers
of the noiseGf and expanding correlation functions ofG in
terms of two-point correlation functions of the noise. Sin
the noise is amplified by the dynamics of Eq.~35!, this ex-
pansion is not expected to converge. However, after res
mation of the series, it becomes possible to replace this b
wi
f

s.
at
-

n

n
it

g
A

-
an

expansion not in the two-point correlation function of th
noise, but in the two-point correlation function ofG itself.
Further, a resummation of series leads to a resummed pr
gator~defined below!. Unlike the Navier-Stokes perturbatio
theory for turbulence@15#, it will not be necessary to define
a resummed interaction vertex. The above procedure lead
a well-defined perturbation series in ‘‘skeleton’’ diagram
One point that will be necessary in the following treatme
that is not necessary in the case of turbulence is thatG is a
complex field, and thus the propagators will be direct
lines; the notation that follows will therefore differ from tha
seen in Navier-Stokes problems.

The perturbation theory is constructed as follows. T
equation of motion~35! permits us to solve forG( j ) in terms
of a cubic inG( j ). Using the definition ofŴ in Eq. ~34! we
write

G~ j !5S s~ j !1
]

]t D
21

$Ŵ@ j ,G~k!,G~ l !,G* ~m!#

1s~ j !Gf~ j !%, ~36!

wheres( j ) is used instead ofs becauses may, under RG
flow, acquirej dependence.

The operator@s( j )1]/]t#21 may be expanded as a fo
mal power series in]/]t. In Navier-Stokes perturbation
theory, this operator is referred to as the propagator, in a
ogy with a similar object in field theory.

We may then iteratively solve Eq.~36! as
n
r
he
G~ j !5
1

s~ j !
Ŵ@ j ,G~k!,G~ l !,G* ~m!#1Gf~ j !1OS ]

]t D
5

1

s~ j !
Ŵ@ j ,Gf~k!,Gf~ l !,Gf* ~m!#1Gf~ j !1

1

s~ j !

3Ŵ†j ,
1

s~k!
Ŵ@k,G~n!,G~o!,G* ~p!#,Gf~ l !,Gf* ~m!‡1•••1OS ]

]t D
5•••. ~37!

The iterative solution of Eq.~36!, by solving for the values ofG(k), G( l ), andG* (m) on the right-hand side, is an expansio
in powers of the interactiont. This is simultaneously an expansion in powers of the noiseGf . The zeroth-order and first-orde
terms in t and one of the second-order terms have been written in Eq.~37!. At any point in the process, one can stop t
perturbation expansion by settingG( j )5Gf( j ) plus higher orders in]/]t. Thus, in the perturbation expansion forG one sums
at every stage over two possible expressions forG:

G~ j !5@1/s~ j !#~1/m!E dkt~ j ,k!G~k!E E dldmG~ l !G* ~m!exp@2~ l1m!/L#d~k1 l2m2 j !2u~ j2k!1OS ]

]t D ~38!
pon
ted
ns.
of

r

or

G~ j !5Gf~ j !1OS ]

]t D . ~39!

These operations can be represented graphically
Feynman diagrams, in whicht is an interaction term ands is
th

like a mass term. This leads to a series of diagrams forG.
These diagrams have no loops.

The quantities computed as described above depend u
the specific realization of the noise. Since we are interes
in average quantities, we will compute correlation functio
A correlation function is defined as an average over noise
a product of severalG( j ),G* ( j ) with the same total numbe
of G andG* and will be written as
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55 143RENORMALIZATION THEORY OF STOCHASTIC GROWTH
^G~ j 1!G~ j 2!•••G~ j n!G* ~k1!G* ~k2!•••G* ~kn!&.
~40!

When computing these averages, the average over n
must be taken. This is done by taking noise terms resul
from the above expansion forG and G* and contracting
them with each other in all possible pairwise fashions. E
contraction of two noise terms at momentaj ,k leads to a
factor d( j2k)N( j ), as given by Eq.~33!. This leads to dia-
grams with loops.

Figure 3 indicates how diagrams for the theory are dra
There are three types of diagrams that may be drawn. T
are drawn in essentially the same fashion, except that dif
ent meanings are assigned to the external lines and diffe
numbers of noise contractions are included. A diagram fo
correlation function has one external line for each term in
correlation function to be computed. Diagrams for quantit
other than correlation functions may have different meani
assigned to the external lines. These diagrams all involve
or more external lines being expressed as a function of
other external lines. This may occur either as an expansio
G directly in terms of the noise or as a piece of a diagr
that occurs inside another diagram. For example, the diag
~a! in Fig. 3 is not itself a correlation function, but represen
a term that may occur inside a computation of a correlat
function. For this diagram, the line forG( j ) is expressed in
terms of other lines, which in turn may be set equal to
noise or may be further expanded.

The notation for diagrams is the following: crosses den
contractions on noise and the directions of the lines indic
complex conjugation and orientation within the diagram.
line may be said to carry momentumj ; when two lines are
contracted, they must carry the same momentum and al
ternal lines are assigned a momentum determined by the
ticular correlation function to be computed. At vertex has
two lines entering and two lines leaving, corresponding

FIG. 3. Diagrams illustrating interaction vertex and contract
of noise terms. The first diagram results from setti
G( j )5 Ŵ @ j ,G(k),g( l ),G* (m)#. The second diagram would oc
cur in evaluatinĝ Gf( j )Gf* (k)&5d( j2k)N( j ).
ise
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G andG* . TheG( j ) line for a t( j ,k) vertex is drawn as
entering, theG* (m) is drawn as entering since it is comple
conjugated, while the other lines are drawn as leaving
vertex. Thej and k lines will always be drawn parallel to
each other in at vertex; thel andm lines will be drawn at an
angle. The distinction must be made betweenj ,k and l ,m
becausej andk enter intot while l andm are summed over
blindly.

The rules for diagrams for correlation functions may
summarized as follows. To calculate the average of the pr
uct of G( j 1)G( j 2)•••G( j n)G* (k1)G* (k2)•••G* (kn),
where j i ,ki are various numbers, draw one external line
each term in the correlation function. The terms inG should
be drawn as entering the diagram with momentumj i , while
those forG* should be drawn as leaving the diagram w
momentumki . Draw all possible diagrams, assigning a fa
tor of t( j ,k)2u( j2k) to each vertex and a factor o
1/s( j )1O(]/]t) for each line, while conserving the sum o
ingoing and outgoing momenta at each vertex. For e
noise contraction assign a factor ofs2( j )N( j ). Finally, the
perturbation theory may give rise to a term such asu(0).
This will arise from something like*d jd( j2k)u( j2k).
While u( j ) is 0 for negativej and 1 for positivej , u(0) will
be taken to be equal to 1/2, according to Eq.~15!. This is a
result of the factor 2 difference between powers ofz in the
expansion forf ; this difference was discussed in reference
Eq. ~9!. Alternately, if we recall that alld functions should
be assigned some nonzero width, then the above inte
evaluates to 1/2.

B. Resummation

This theory exhibits a spontaneous breaking of circu
symmetry. One starts the growth process with a circula
symmetric cluster, which implies thatG( j )50 for j.0, but
this is not a stable state. Instead, the dynamics evolvesG to
one of an infinite number of states with nonzeroG( j ), al-
though on averageG( j )50 for j.0. If we impose some
boundary condition, such asG51 at timet50 and look at
G for much later times, the perturbation theory in a sm
noise term causes us to reach large values ofG. Having
imposed these boundary conditions, the noise is amplified
the dynamics and will grow large.

This large growth of noise means that if we evaluate
two-point correlation function̂G( j )G* (k)& we will obtain
some answer of the formd( j2k)uG2( j )uav, where
uG2( j )uav is an appropriate function ofj and uG2( j )uav is
much larger thanN( j ). In the long-time limit,uG2( j )uav is
not a function of time.

Then, we may imagine that, when calculating any oth
correlation function, at any stage in the perturbation theo
two lines that were contracted to obtain the valueN( j ) can
instead have their contraction dressed with additional in
actions to convertN( j ) to uG2( j )uav. Two important points
must be made about this procedure. First, it is important
this value uG2( j )uav is completely uncorrelated with an
other values ofG in the diagram; all correlations are alread
taken into account by the interaction vertices of the diagra
Second, we must be careful to avoid overcounting; sin
each contraction in a diagram includes many diagrams
volving dressing the contraction in various ways, we m
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144 55MATTHEW B. HASTINGS
not further dress these contractions.
For notational convenience, I will continue to writeGf

everywhere, but now

^Gf~ j !Gf* ~k!&5d~ j2k!uG2~ j !uav. ~41!

Gf is similar to a free field in field theory. Any averag
product of severalGf can be decomposed into pairwis
products. This is the resummation of noise into two-po
correlation functions ofG that was mentioned abov
in the comparison to Navier-Stokes perturbation theo
Gf( j ) is now an unknown function ofj ; one of the goals of
the RG will be to determine the dependence of this funct
on j .

Similarly, the functions( j ) can be resummed. Any singl
line between two interaction vertices, which would norma
be represented by a factor of 1/s, will instead be represente
by 1/seff, where seff takes into account possibilities o
dressing that line, without interactions with other line
seff is an ‘‘effective’’ s. This is the resummation of propaga
tors.

As a result of these two resummations, to avoid ov
counting we must require that we do not count diagrams
which some portion of the diagram that contains interacti
has only two lines leaving it. See Fig. 4 for examples
contributions to j , contributions toseff, and diagrams tha
cannot be included in the theory as they would overco
contributions.

As one will be able to verify after performing the R
calculation, within the formal power-series expansion
(s1]/]t)21, one may neglect all terms in]/]t in the RG
calculation of Sec. V. Terms flow only to higher powers
]/]t. BecauseuG2( j )uav is taken to be constant in time, term
with ]/]t will drop out in many places. Then, the perturb
tion rules, ignoring the time derivative, may be summariz

FIG. 4. ~a! Possible contribution to the average ofuG2u. ~b!
Possible contribution toseff. ~c! A diagram that should not be con
sidered if the propagators are already drawn in terms ofseff.
t
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as follows: draw all diagrams~subject to the rules forbidding
overcounting!, with appropriate external lines, assigning
factor 1/seff( j ) to each line, a factort( j ,k)u( j2k) to each
vertex, and a factor (seff)2( j )uG2( j )uav to each contraction on
noise, while conserving momentum everywhere.

C. Example calculation

It will be useful to give a simple example of applyin
such a perturbation theory to a noninteracting system.
example, consider the simplified equation of motion

Gt~ j !1sG~ j !5t~ j , j !G~ j !G~0!G* ~0!1sGf~ j !, ~42!

wheret( j , j ) is proportional toj22 j21, which is equal to
2 j21. Let us suppose thatGf is constant in time, to sim-
plify the problem further. Then, let us define the time sc
so thatt( j , j )52 j21. Let us pick the desired scale of th
cluster so thatG(0)51. Physically,G(0) is very large com-
pared to the noiseGf(0). This means that for a stationar
state~after all,s is adjusted to produce a stationary avera
size! we may letGf(0) be small and we needs approxi-
mately equal to21.

Now that the values ofs,t are fixed, we may find the
solution using either perturbation theory or a straightf
ward solution. The latter method gives2G( j )
52G( j )2 jG( j )2Gf( j ). Therefore,G( j )5Gf( j )/ j and
^G( j )G* ( j )&5N( j )/ j 2. This noninteracting system i
stable.

The perturbation theory forG(0) is slightly tricky. If
we ignore the time derivative, we can reach only small v
ues ofG(0) in the perturbation expansion. However, in fa
for the given s and t, a small Gf(0) produces a large
G(0), under the time evolution. Let us suppose that this p
of the process has been done and we obtain a resum
expression for̂G(0)G* (0)&. This resummed expression
uG2(0)uav51. Then we may ignore the time derivatives a
obtain the expression for the higherG( j ) in a straightfor-
ward fashion.

The perturbation theory expansion toG( j ) gives the infi-
nite sum

FIG. 5. Perturbation expansion in the example theory.
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55 145RENORMALIZATION THEORY OF STOCHASTIC GROWTH
G~ j !5Gf~ j !1@ uG2~0!uavt~ j !/s#Gf~ j !

1@ uG2~0!uavt~ j !/s#2Gf~ j !1•••. ~43!

This is equal toGf( j )@12uG2(0)uavt( j )/s#215Gf( j )/ j .
This perturbation expansion is shown in Fig. 5. Each l
terminates by settingG equal to the noise. Similarly, th
perturbation expansion to the correlators gives a produc
two infinite sums. This product is represented in diagrams
taking the sum in Fig. 5 and noise contracting it with
complex conjugate.

One may defineseff( j ) for this simple theory; the dia
grams of Fig. 5 define the inverse ofseff. Therefore

seff~ j !5s2t~ j !uG2~0!uav, ~44!

which simplifies Eq.~43! to G( j )5@1/seff( j )#sGf( j ).

V. RENORMALIZATION-GROUP CALCULATION

We investigate the effect of changing the cutoff in t
equation of motion. This leads to the introduction of d
grams to describe the changes in the theory as a resu
lowering cutoff. It is shown how to incorporate these into
change ins,t. The fixed point is found.

A. Lowest-order contributions to RG flow

In the RG calculation, first the cutoff is lowered fromL
to L2dL. If the cutoff is imposed in a smooth fashio
„interaction term t( j ,k)G(k)G( l )G* (m)exp@2(l1m)/L#…,
the change in the theory under a change in the cutoff can
obtained by adding an additional term to the equation
motion ~35!, equivalent to the original cubic term, exce
that the cutoff exp@2(l1m)/L# is replaced by
(dL)]$exp@2(l1m)/L#%/]L. This new term is

~1/m!E dkt~ j ,k!G~k!E E dldmG~ l !G* ~m!~dL/L!

3@2~ l1m!/L#exp@2~ l1m!/L#

3d~k1 l2m2 j !2u~ j2k!. ~45!

The sum of the original interaction term plus this new term
equal to the interaction term at reducedL. This term will
have a circle around the vertex when it appears in a diagr

Because this term is small when the external mome
l ,m are small, it does not directly enter into correlation fun
tions of the low momentum theory. It enters indirectly,
more complicated diagrams. We will then consider vario
such diagrams that include this term and show that, for
simplest such diagrams, these diagrams may be rewritte
terms of a change ins and t.

This procedure has some slight logical differences fr
other RG procedures. In other procedures, the cutoff is o
imposed in a sharp fashion at some momentum. Here
cutoff is imposed in a very smooth fashion; I believe this h
certain logical advantages. This procedure is similar to
technique of counterterms in the original formulation
renormalization in field theory.

First, I will evaluate the simplest diagrams to which th
new term gives rise and do the RG calculation; then, in S
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V B, I will consider other possible diagrams and explain w
they are neglected. Throughout the RG calculation, whe
write uG2(L)uav, I actually mean

E dluG2~ l !uav
]e22l /L

]L
. ~46!

This is just a weighted sum ofuG2( l )uav at l of orderL, and
due to the smooth cutoff it is this weighted sum that w
enter into all the diagrams considered.

The diagrammatic expansion forseff will now include the
diagram shown in Fig. 6. This changesseff( j ) to

seff~ j !2t~ j , j !uG2~L!uavdL/m. ~47!

The term 2u( j2k) in Eq. ~45! gives 1 in this case, as dis
cussed in the perturbation theory rules.

Additionally, the new term in the equation of motion ca
give rise to a diagram as shown in Fig. 7~a!, which can be
represented by changingt( j ,k). This arises from substituting

seff~ l !G~ l !5Gf~m!t~ l ,m!G~n!G* ~o!d~m1n2 l2o!

32u~ l2m! ~48!

and

FIG. 6. Diagram contributing to the renormalization ofseff.

FIG. 7. ~a! Diagram contributing to the renormalization oft. ~b!
Another possible contribution to the renormalization oft. This con-
tribution is ignored. Certain difficulties are encountered in draw
this diagram. If thet interaction were drawn in standard form, man
lines would need to cross each other.
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146 55MATTHEW B. HASTINGS
G* ~m!5Gf* ~m! ~49!

into Eq. ~45!, taking l of the order ofL. The result changes
t( j ,k) to

t~ j ,k!12~dL/m!t~ j ,k!t~L,L1k2 j !uG2~L1k2 j !uav/seff.
~50!

Assuming thatL is a high momentum andj ,k are low
momenta, thenL1k2 j5m is a high momentum. One doe
not use terms arising from substitutingseff( l )G( l )
5G(n)t( l ,n)Gf(m)G* (o), instead of the substitution o
Eq. ~48!, because such terms involve too many hig
momentum components ofG. The diagram corresponding t
this term is shown in Fig. 7~b!. Such terms should be ig
nored, as they will be small when determining the behav
of the system for momenta much less thanL. Remember that
the cutoff is imposed, in the original equation, onG( l ) and
G* (m), notG(k). This means that the presence of the hig
momentum termG* (m) will make such terms small.

All momenta are now rescaled byL/(L2dL) to put the
ultraviolet cutoff back atL. This changesseff( j ) to

seff~ j !2 j @dseff~ j !/d j #~dL/L!. ~51!

Because of the integration in the interaction term and
one power ofm extracted fromt( j ,k), the dimension of
t( j ,k) is equal to (momentum)21. Therefore, under resca
ing, the functiont( j ,k) becomes

t~ j ,k!2 j @]t~ j ,k!/] j #~dL/L!2k@]t~ j ,k!/]k#~dL/L!

2t~ j ,k!~dL/L!. ~52!

Combining the terms resulting from the integration, E
~50!, with those from the momentum rescaling, Eq.~52!,
every term in the change oft( j ,k) either is a function of
( j2k) or would be a function of (j2k) if t( j ,k) were a
function of (j2k). For a stationary point, we then requi
that

t~ j ,k!5t~ j2k!. ~53!

If t( j ,k)5t( j2k), then similar logic using Eqs.~47! and
~51! requires thatseff( j ) becomes a constant. These requi
ments of momentum independence ofs,t likely do not hold
at the extreme infrared for any true system, or else the eq
tion of motion @Eq. ~35! using renormalizedt ands# would
have no nonzero solution, but in the scaling region betw
the infrared and ultraviolet they will hold. For the rest of th
subsection, the numbers is the constant to whichseff flows
under the RG and the numbert is t(0).

At this point, I have done the first part of the RG for th
two numberss and t. It is now necessary to rescaleG to
leave Eq.~35! invariant under the renormalization and re
caling. LetG be rescaled to

@12r ~dL/L!#G. ~54!

This implies a rescaling ofs to

@11r ~dL/L!#s ~55!

and a rescaling oft to
-

r

-

e

.

-

a-

n

@113r ~dL/L!#t. ~56!

Naively one might expect that there could also be an ov
all rescaling of boths and t by a factora. This would leave
G unchanged. Taking derivatives of ln(s) and ln(t) with re-
spect to ln(m) ~since the ultraviolet cutoff is lowered to
L2dL and then rescaled back toL, it is actuallym that
changes in this process!, for s and t to be stationary we find

r2~L/m!tuG2~L!uav/s1a50, ~57!

3r12~L/m!tuG2~L!uav/s1a2150 ~58!

This in itself does not provide enough information to extra
anything useful, because having bothr anda means thats
and t can be scaled to arbitrary values.

However, in fact,a50, as will now be shown. The time
derivatives of Eq.~35! were ignored in the RG because the
did not effect the flow ofs andt. We can still use argument
about the time derivativeGt( j ) to show thata50. We can
use Eq.~35! to calculateGt( j ) of the renormalized, rescale
problem in two ways. One way is to takeGt( j ) for the prob-
lem before renormalization and rescaling and then rescale
momentumj and multiplyGt( j ) by @12r (dL/L)# in anal-
ogy with Eq. ~54!. Another way is to use the renormalize
rescaleds, t, andGf in Eq. ~35! to computeGt( j ). For these
two methods of computingGt( j ) to give the same result, a
required by the fact that they describe the same system
may be shown that

a50. ~59!

A simple way of stating the argument leading to this resul
that, although if time derivatives are neglected in Eq.~35!
the equation is invariant under multiplying the three ter
s, t, andGf @here referring to the noise before resummatio
that is, the noise described by Eq.~33!# by the same constant
such a multiplication does not leave the time derivatives
variant and so should not be allowed in the rescaling par
the RG.

Then, the fixed point equations~57! and ~58! can be
solved for

r5~L/m!tuG2~L!uav/s51/5. ~60!

This result forr is the main result of the first-order RG.
This gives the rescaling ofG( j ) with j . The magnitude of

G( j ) must decay asj21/5. Thus

uG2~ j !uav} j22/5. ~61!

The combination (L/m)tuG2(L)uav/s is invariant under a
rescaling ofG of G by Eq. ~54! and a corresponding resca
ing of s andt by Eqs.~55! and~56! and gives us the dimen
sionless coupling constant for this problem. From Eq.~60!
the dimensionless coupling constant is 1/5, which is not
finitesimal; however, after RG flow, the problem is no long
strongly coupled, as the constant is less than 1.

The reason that a factor of 1/m was removed from
t( j ,k) is now clear; this makes the above coupling const
truly dimensionless. As a result of the removal of the fac
of 1/m, the dimension oft( j ,k) is (momentum)21. However,
uG2( j )uav has the dimension of momentum; this is becau
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55 147RENORMALIZATION THEORY OF STOCHASTIC GROWTH
taking G to be dimensionless, Eq.~41! gives uG2( j )uav a
dimension inversely proportional to thed function. Thed
function has dimension of inverse momentum and thus
end result is to maketuG2( j )uav dimensionless.

As a further comment on the dimensionality of the co
pling constant, recall that thed functions have a finite heigh
proportional to 1/m. This finite height changes under the R
which implies a rescaling ofuG2( j )uav under the RG flow; by
multiplying t by 1/m we shift this rescaling ontot.

An argument was made above, leading to Eq.~59!, in-
volving Gt for the problem before and after RG. We ma
extend this argument and also say something about the m
nitude ofGt( j ) for different j . The quantitiessG and tG3

remained constant under the RG, as a result of the resca
of G, s, andt and the renormalizations ofs andt, from Eqs.
~47!, ~50!–~52! and~54!. We also needGt to remain constan
since this is also a term in Eq.~35!. Suppose the characte
istic inverse time scale for fluctuations inG( j ) is v( j ). Then
Gt( j ) is of orderv( j )G( j ). For this combination to remain
constant,v must change as a result of the rescaling ofj in
the RG. In fact,v( j ) must have the same log derivativ
under RG thats does, although the log derivative ofs results
from renormalization@Eq. ~47!#, while the log derivative of
v( j ) results from rescaling. This implies that

v~ j !} j 1/5. ~62!

This means that for smallerj , the time scale for fluctuation
is longer. Returning to the original problem, as described
Eq. ~29! with a time-dependent cutoff, this means that t
lower Fourier coefficients grow at a roughly constant ra
This self-consistently justifies the adiabatic assumption
Sec. III.

B. Other contributions to RG flow

One may imagine that the new term of Eq.~45!, repre-
senting the rescaling of the cutoff, may enter into additio
diagrammatic contributions. Various possibilities are sho
in Fig. 8. I will show that, for low-momentum behavio
these terms are unimportant and then discuss in more ge
ality why other contributions are negligible.

One may check by hand that the first example is sma
external momenta are much less thanL. The second ex-
ample will be discussed below. The third example vanis
due to phase-space factors. The fourth example vanishes
to phase-space factors if the two lines leaving the top of
diagram are close in momentum; this means it does not a
the RG flow oft( j ,k) when j5k. In the rest of the section
various other diagrams will also be said to ‘‘vanish’’; th
will only mean that they vanish when considered either
low momentum or, if they contribute to the RG flow o
t( j ,k), when considered atj5k.

The fifth example, a contribution to the six-point functio
will be seen below to be small when calculating correlatio
of only four, and not six or more,G( j ). The sixth example
should not be considered when the rescaling ofuG2( j )uav is
taken into account; since (L/m)uG2(L)uav is stationary un-
der RG flow, such a diagram is canceled by the various
calings.
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In order to indicate in general why such contributio
may be neglected, I would like to define some addition
terminology to describe certain paths and contractions
these diagrams. When considering a contribution toseff, one
may follow one line through the diagram as follows. Sta
with the incoming line. At everyt vertex, if one enters with
G( j ), follow out alongG(k), notG( l ) orG* (m), where the

FIG. 8. Other possible contributions in the RG flow.
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roles of j ,k,l ,m are as in Eq.~35!. If the line one is follow-
ing is contracted~this will be referred to as anexceptional
contraction! with a G* (m) leaving a t vertex, follow out
alongG( l ) of that t vertex. This path will be referred to a
themain line. Now, any diagram that includes an exception
contraction, such as the diagram of Fig. 8~a!, will be small
for low momenta, since theG(k) leaving such a diagram
will have only a small range over which to integrate. For F
8~a! the main line is given by following the horizontal arro
along the bottom of the diagram from left to right, throug
the t vertex, until it bends up and left. Then go down and l
through the noise contraction into thet vertex and then leave
the t vertex along the line going up and left. Follow this lin
through its bend back to the right until it leaves the diagra

The smallness, of the contribution toseff given in Fig.
8~a!, for small momenta does not completely justify the n
glect of such terms. For example, when evaluating the
contribution to t, the value ofseff used isseff(L), not the
low-momentumseff, and thus a high-momentum contributio
to seff may change the low-momentum renormalizedt. How-
ever, even for a calculation ofseff(L), the exceptional con-
traction will mean some reduction in available phase sp
over which to integrate.

One may check that contributions toseff( j ) such as the
third example in Fig. 8 will always vanish, regardless
what j is, due to theu functions in Eqs.~35! and ~45!. The
lines coming off oft vertices connected to the main line mu
be contracted within themselves, not between different v
tices. In this diagram, the main line is simply the entire ho
zontal arrow running along the bottom of the diagram. Th
the only contribution toseff will be the contribution of Fig. 6.

For contributions tot(0), we maydefine two main lines.
One can follow the main line of theG( l ) or the main line of
theG* (m). These are the lines one follows if one starts
the line for G( l ) or for G* (m) and follows through the
various contractions as defined above. These two lines jo
some point in a noise contraction.

The second example of Fig. 8 has an exceptional cont
tion and may be ignored. The main line starting with t
G( l ) line leaving the circledt vertex proceeds up and lef
then turns right, going straight across the diagram to the e
Then it turns down and left, up and left through an exce
tional contraction into at vertex. Then it goes down and le
into a noise contraction, where it ends. The main line star
with G* (m) starts at the circledt vertex and proceeds u
and right until it terminates at the noise contraction. Figu
8~b! is similar to Fig. 7~b!, except an additionalt vertex has
been added to the diagram. If this vertex were removed,
diagram would be small for small external momenta. W
the t vertex on the diagram, the diagram is very difficult
evaluate since to evaluate it requires a knowledge of
t( j ,k), not just t(L,L). However, the diagram is not onl
next order in the coupling constant, but also small due to
various exponentials present, as may be verified. Any
gram fort with such an exceptional contraction will have th
same problems. That is why we will ignore them.

If the main line of theG* (m) has lines leaving it tha
contract against lines leaving the main line ofG( l ) then the
diagram will again vanish due to theu functions. A contri-
bution to t cannot have both external lines leaving the m
line ofG* (m). Therefore both lines must leave the main li
l
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of G( l ) and the lineG* (m) cannot be dressed by any inte
action vertices. Again due tou functions, the main line of
G( l ) can include only one interaction vertex tht has bo
external lines on it. For example, the diagram of Fig. 8~d!
has external lines coming off different interaction vertic
and vanishes if the two lines are close in momentum.

All that remains is to justify the neglect of six- an
higher-point functions, such as could appear from the d
gram in Fig. 8~e!. If we wish to calculate a correlation func
tion of four G( j ) and somewhere in one diagrammatic c
culation we have a six-point function, some of the lin
leaving the six-point function must be contracted agai
each other. Then somewhere in the diagram for the corr
tion is a contribution to the four-point function that include
the six-point function within it. Therefore, the renormaliz
tion procedure would have yielded this contribution to t
four-point function as a change int. But, we have already, a
outlined above, obtained all the contributions to the chan
in t. Therefore, there is no such diagram.

Finally, the lowest-order contributions considered in S
V A have a certain universality; considering only the di
grams of that subsection, the nature of the fixed point d
not depend on the initial form oft( j ,k). Higher-order RG
contributions will depend on the initial form oft( j ,k).

VI. FRACTAL DIMENSION
AND MULTIFRACTAL EXPONENTS

It is now possible to begin extracting exponents of t
original DLA model. Different exponents correspond to d
ferent correlation functions of this model; it will be the pu
pose of this section to determine how to compute expone
from correlation functions. This process depends on the
cussion of the adiabatic assumption and the assumption
to introduce the cutoff into the continuum equation. Fro
those assumptions an unambiguous means of determi
exponents from correlation functions is given.

In any actual simulation, there is an ultraviolet cutoffL
determined by the ratio of the macroscale to the microsc
In the RG, a power-law decay was found forG( j ). Since the
RG describes a fixed point in the scaling region, within t
RG itself this power law holds for arbitrarily largej . Within
an actual simulation this power law will fail atj of order
L, whereL is the cutoff of Eq.~25! resulting from the finite
size of the cluster in the simulation. Thus, in the calculat
of exponents that follows, although all correlation functio
are calculated using the rules of the RG and of perturba
theory, the integrals over correlations functions that we w
use must be cut off at momenta of orderL, as will be done.

Since the size of the object follows a power-law behav
given by

F1}t
1/D, ~63!

whereD is the radius of gyration dimensions of the obje
we have

d ln~F1!

dt
}1/t. ~64!

As a side point, strictly speaking this requires thatdF1 /dt
can be replaced by the derivative of the average value
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F1, but both numerical evidence and the RG flow of fr
quency resulting from Eq.~62! justify this assumption. How-
ever,

dF1 /dt5^l&F1 , ~65!

where^l& is defined to be the average value ofl over the
unit circle at a given time. Equation~65! may be derived by
using Eq. ~14! to calculatedG0 /dt and then Eq.~26! to
relate this todF1 /dt. Combining Eqs.~64! and ~65! we get

^l&}1/t. ~66!

Equation~66! is equivalent to the electrostatic scaling la
derived by Halsey@5#. In the continuum approximation
^l&5*d j^G( j )G* ( j )&. Here it must be understood tha
while in the perturbation theory this expression is forma
infinite, since ^G( j )G* ( j )&5d(0)uG2( j )uav, in the above
average we remove this factor ofd(0) @17#. Calling D the
fractal dimension,

F1
2D}1/t}^l&}G0

2EL

d j j22/5}F1
22L3/5}F1

22F1
3/10.

~67!

This gives the result that

D5221/211/551.7. ~68!

The first proportionality in Eq.~67! followed from the
radius of gyration definition of the dimension. The seco
followed from the electrostatic scaling law. The third fo
lowed from the expression for̂l& in terms ofG and from
the scaling ofG derived in the RG. The fourth followed from
Eq. ~26! and from doing the integral. The fifth followed from
the functional dependence ofL on F1 as given by Eq.~25!.

This is the simplest way to derive the fractal dimensi
from the above work. The calculation of the growth ra
from Eq. ~66! is essentially a determination of the unreno
malized, unrescaleds in Eq. ~35!. It may also be possible to
repeat the same result by using the rescaling ofs under the
RG to obtain the rescaling of the growth rate under a shif
L.

The multifractal exponentst(q) are defined by

t~q!5 lim
l→0

F lnS (
i
Eq~ i ! D Y ln~ l !G , ~69!

where the surface of the cluster is covered with intervals
lengthl andEq( i ) is the integral along thei th interval of the
qth power of the electric field. Numerical calculations
these exponents can be found in Refs.@10,18#.

One can try to compute higher multifractal exponents
ing the RG@the work above amounts to computingt(3) and
showing thatD5t(3)#. For example, the scaling oft(5) can
be determined by calculating the scaling of

EL

d jdkdldm̂ G~ j !G~k!G* ~ l !G* ~m!&d~ j1k2 l2m!

~70!

against the upper cutoffL. This is because the given integr
is equal to the desired power of the field integrated over
-

d

n

f

-

e

surface of the object. If all the terms in this integral contri
uted with the same phase, the integral would scale
L24/513. Of course, the terms are independent and this m
estimates the exponent. It is necessary to use the perturb
theory to evaluate the four-point correlation function. T
simplest possibility is to useGf as an estimate for all the
G in Eq. ~70!. The diagram for this is shown in Fig. 9~a!. The
only terms that would then contribute would be when aG
and aG* were at the same momentum and the integ
would scale asL24/512. The different scaling results from
having a different number of momenta to integrate over. A
other possibility~this is analogous to a tree approximatio
for a scattering problem! is to substitute for the highest mo
mentumG in terms of at vertex, leaving a six-point corre
lation function, and then take all sixG,G* to beGf . The
scaling is then asL26/513. The diagram for this is shown in
Fig. 9~b!. Since this scales more strongly withL, it will be
dominant in the limit needed to computet(q).

The following is the rule for calculating multifractal ex
ponents. Letn be a positive integer. Calculate the integr
over 2n-point correlation functions defined by

EL

d j1EL

d j2•••EL

d jnEL

dk1EL

dk2•••

3EL

dkn^G~ j 1!G~ j 2!•••G~ j n!G* ~k1!G* ~k2!•••G*

3~kn!&d~ j 11 j 21•••1 j n2k12k22•••2kn!. ~71!

If this integral behaves, in the limit ofL→`, asLa, where
a is some number, thent(2n11)52n2a/2. The factor
2n is the trivial scaling that would result even for a nonfra

FIG. 9. ~a! Simplest diagram for the correlation function need
to computet(5). Theexternal lines are the variousG( j ),G* (k) in
the correlation function.~b! Tree diagram for the same correlatio
function.
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150 55MATTHEW B. HASTINGS
tal object; the factora/2 results from the dependence onL
and from the square-root dependence ofL on length scale.

In general, we can always find, fort(q), a tree diagram
that scales likeL22(q22)/51(q22). Then

t~q!5~q21!21/2@22~q22!/51~q22!#. ~72!

Alternately, another definition of exponents is

Dq5t~q!/~q21!. ~73!

Then

Dq5t~q!/~q21!512
q~1/221/5!2112/5

~q21!
, ~74!

which is equivalent to

Dq5
0.7q20.4

q21
. ~75!

VII. COMPARISON WITH NUMERICS AND DISCUSSION

The theory is compared with numerics and further tests
the theory are proposed.

A. Comparison with numerics

In previous work we found that the alternate formulati
of DLA using analytic functions@6# produces clusters with
appearance and dimension similar to those of clusters gr
using the lattice formulation of DLA. As far as we can te
the two formulations are equivalent whena52.

The simplest comparison with numerics is the dimens
itself. The value 1.7 is very close to the accepted value
1.71.

Equation ~75! for higher multifractal exponents is th
same as the formula obtained with a wedge model by Ha
et al. @10#, except that the wedge model left the quantit
0.7 and 0.4 as unknown constants to be fitted to nume
They define quantitiesf anda, the dimension of the set o
which the wedges exist, and the strength of the singula
~hopefully, the reuse of the symbola will cause no confu-
sion! and show thatDq5(aq2 f )/(q21). A numerical fit
gavea50.705, f50.42, while a comparison with Eq.~75!
gives a50.7, f50.4. It is now known that such a simpl
scaling law is not valid for largeq @18#, and in the original
paper of Halseyet al. it was suspected that such a law wou
not hold.

The possible difference between theory and experim
here for largeq should not be construed as a flaw in t
presented work. First, the above calculation is only a lowe
order calculation. To higher orders, we may find a form
t( j ,k) that has nontrivial behavior. This may alter the resu
from the tree approximation to the correlation function us
to compute the exponents. Second, we may find interes
behavior if we consider other contributions to the correlat
exponents, beyond the tree diagrams used above. Third
though the neglect of the appearance of the six-point fu
tion was valid when considering the renormalization flow
s andt, as discussed in reference to Fig. 8~e!, such a neglect
is not valid if one actually wishes to compute six- a
f
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higher-point correlation functions. Fortunately, such mu
point interaction terms are captive variables, in the sense
if one knows the behavior ofs,t under RG flow one may
systematically determine the higher interaction terms t
will appear. Fourth, the above derivation of multifractal e
ponents involved expressing the exponent in terms of co
lation functions; this is possible only for odd multifract
exponents. Thus, in fact, it is not possible to say anyth
about even exponents in any simple fashion.

Additionally, there exist some difficulties in numerica
calculation of higher multifractal exponents. According
the branched growth theory of DLA@16#, the time required
to compute higher exponents is superexponential in the o
of the desired exponent. Thus the exact values of the la
exponents may not be given precisely by the numerical
periments. This mathematical difficulty may be the source
the controversy that appears to exist between the diffe
numerical calculations of these exponents. For example,
value quoted fort(3) by Ball and Rath is less than 1.6
which is definitely at odds with the electrostatic scaling la
~believed to be exact from various numerical calculatio!
and with other numerical calculations of this exponent. T
electrostatic scaling law says thatt(3)5D51.71. There also
exists controversy about the precise value of the dimens
of DLA, as mentioned in Ref.@2#. Thus, in fact, it is not clear
exactly how large the discrepancy between the above res
and the numerical results is.

It is also of interest to check numerically the scaling
G( j ). This was checked for two cases: first, for a sing
cluster as described in the next paragraph, and second, fo
ensemble of clusters as described in the paragraph after

When*d jG( j )G* ( j )e2 j /L is plotted againstL0.6, where
in reality the integral is a discrete sum, one expects to fin
straight-line behavior. This is what is found, as shown in F
10, except that for largeL the curve flattens out, since th
numerical calculation included only a finite number of term

FIG. 10. Plot of scaling ofl against cutoff, as described in th
text.
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Also for smallL, the curve flattens out atF1
22, which, in the

long-time limit, is vanishingly small compared to the fu
integral. For the finite cluster size of our simulation,F1

22 is
not negligible. The clusters here were grown using the c
formal mapping technique outlined previously. The coe
cients ofG were computed with a numerical Fourier tran
form, by mapping a large number of points on the surface
the circle~in fact, slightly outside the circle, to improve nu
merical behavior! to the surface of the aggregate~again, to
slightly outside the surface of the aggregate! and analytically
calculating the derivative of the mapping for each point. T
technique is not very efficient for growing large clusters,
least as presently implemented. It requiresO(N2) time to
computeN growth steps, but it is very easy to calcula
coefficients ofG using this program. I used only aggregat
of around 7000–10 000 walkers.

As another check, 50 clusters of 6000 steps were si
lated, and for each cluster, the coefficients ofG were com-
puted. The squares of these coefficients were scaled
G(0), theoverall inverse cluster size, and then averaged
gether. In Fig. 11 the mean squares ofG( j ) are plotted
against j on a log-log plot. Numerical difficulties made
impossible to accurately extract the slope in the scaling
gion. This scaling region extends fromj55 to j535 or from
ln(j)51.6 to ln(j)53.5. Theory predicts that this slope
2/550.4. The numerical slope is between 0.3 and 0.5, us
a least-squares fit. The theory line is drawn onto the gra
As an additional check, another ensemble of clusters
simulated, with a differentl0 and a different number o
steps. Within the scaling region of that simulation, the slo
of the mean squares behaved in the same fashion and,
tionally, the mean-square ofG( j ), after scaling by cluster
size, for givenj , was the statistically the same for the tw
simulations.

B. Discussion

A theory has been presented based on the conforma
ture of various Laplacian growth processes. A series of

FIG. 11. Plot of scaling of the logarithm of the mean square
G( j ) against the logarithm ofj , as described in the text.
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proximations were made that produced a modifi
continuum equation of motion; it is hoped that such an eq
tion describes DLA, but even if it does not, it does descr
some form of nontrivial Laplacian growth. A perturbatio
theory was developed for this equation and resumm
To determine various terms in the perturbation theo
it was then necessary to use a renormalization-gr
calculation. This has been carried out only to lowest orde
is a peculiar feature of this method that next-order calcu
tions are vastly more difficult than lowest-order calculation
thus, as yet, there is no analytic calculation of higher-or
effects. Finally, the assumptions leading to the modifi
model were reversed, leading to calculations of quanti
for DLA.

It would be worthwhile to look more closely at highe
order corrections, if not analytically, at least qualitatively,
see what may happen. To lowest order,t( j2k) flows to an
everywhere positive function. Using the lowest ordert to
compute the effect of higher-order corrections will tend
lower the value for the dimension predicted by this theo
However, it is possible that in a more careful next-ord
calculation, the interactiont( j2k) flows to a function tht is
negative for largej2k, possibly increasing the predicted d
mension. As mentioned above, next-order effects depen
some way upon the initial functional form oft( j ,k). Lowest-
order effects do not.

Unfortunately, it is not possible to carry out a stabili
analysis of the fixed point of the lowest-order RG. All th
may be said from the above calculation is that if a fixed po
exists, other than a trivial fixed point for whicht goes to
zero, then this fixed point is described by this RG.

It would also be worthwhile to try to extend this techniqu
to other Laplacian growth models, such as the dielec
breakdown model. For the dielectric breakdown model@11#,
different values ofh correspond, in the continuum limit, to
different values ofa in the conformal mapping model o
Sec. II A. The difference between the dielectric breakdo
model and our model is that, away from the DLA case, o
model uses the same growth probability over the surface
varying walker size, while the dielectric breakdown uses
varying growth probability and constant walker size. A
though this alters the scale of the cluster in our case,
would expect the fractal dimension of the cluster grown a
given a with the conformal model to be the same as t
dimension obtained from the dielectric breakdown mo
with h5a21.

One might naively try to apply the technique above to t
case ofa different from 2, by replacing Eq.~1! with the
definitionG5Fz

2a/2 and using an equation of motion simila
to Eq. ~35!, with different initial t( j ,k). This would lead to
physically absurd results and is in fact different from defi
ing G5Fz

21 and using a modified equation of motion a
described in the next paragraph. The difference is in how
noise term is inserted. It is important for the perturbati
theory that products ofGf may be pairwise decomposed, an
this property means different things depending on whet
G5Fz

21 or G5Fz
2a/2 . In the stochastic problem, eac

growth step produces a simple pole ofFz
21 inside the unit

circle; the angular coordinate of the pole is random and
radial coordinate is determined byl. In the continuum limit

f
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of Sec. II E, the angular coordinate becomes the real valu
u, while the radial coordinate becomes the imaginary va
of u; the interior of the unit circle is replaced by the low
half plane. One may show, using Cauchy’s theorem, t
randomly insertingsimplepoles produces a pairwise decom
position property for the random noise inFz

21 . Therefore,
al

h
s
su
e

io
is
in

c

ev
of
e

at

the Eq.~1! is the best definition ofG.
Onecanhandle the case ofa different from 2 by using a

modified equation of motion, although this may be difficult
a is not even. One would modify Eq.~35! by including
higher powers ofG in the interaction term. For example, fo
a54, the interaction term would be of the form
~1/m!E dkt~ j ,k!G~k!E E dldmdndoG~ l !G* ~m!G~n!G* ~o!exp@2~ l1m1n1o!/L#d~k1 l1n2m2 j2o!2u~ j2k!.

~76!
and
ut-
he
der
This would probably be the most worthwhile test of the c
culations of this paper; although the calculation fora54 is
far more difficult than that fora52, it may still be tractable
to lowest order. It would not be appropriate to attempt suc
calculation in this paper. A few preliminary calculation
show that one obtains at least the physically correct re
that the dimension of thea54 model is less than that of th
a52 model; as yet, the exact value ata54 is not calculated
@19#.
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