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An analytical renormalization-group treatment is presented of a model that, for one value of parameters, is
equivalent to diffusion-limited aggregatio(DLA). The fractal dimension of DLA is computed to be
2—1/2+1/5=1.7. Higher multifractal exponents are also calculated and found to be in agreement with nu-
merical results. It may be possible to use this technique to describe the dielectric breakdown model as well,
which is given by different parameter valu¢S1063-651X97)03901-9

PACS numbsgs): 64.60.Ak, 05.20-y, 68.70+w, 61.43.Hv

I. INTRODUCTION AND NOTATION Also, by comparing a picture of the cluster generated by
keeping only some small number of terms in the Fourier
expansion of the mapping to a picture generated by the full

Diffusion-limited aggregation(DLA) is a model for mapping, it appeared that the finite number of terms gave a
growth of a clustef1], by the accretion of random walkers. good description of the boundary of the object. It did not
These random walkers arrive from infinity and stick whenaccurately describe the exact microscopic structure of the
they contact the cluster. After a walker sticks to the clustergrowth tips and did not correctly describe the structure of
the next walker is released from infinity. This process givesportions of the object far from the growth region, that is,
rise to fractal patterns. Due to the mathematical equivalencéeep in the inside of the object. However, one would expect
of random walks and potential theory, this procedure isthat the microscopic structure is not too important and that
equivalent to solving Laplace’s equation outside the boundthe description of regions where there is little probability of
ary of the aggregate, setting the potential zero on the aggrérowth is also not important.
gate and constant at infinity, and picking a point on the sur- Figure 1 shows a picture of the cluster that results from
face of the aggregate to add the walker with a probabilitythe conformal mapping model. The envelope surrounding the
proportional to the local field strength; this field strength maycluster was generated from the first 40 terms of the Fourier-
be thought of as an “electric field.” series expansion of the mapping used to generate the full

There has been much numerical work on DLA in two cluster.
dimensions, where the fractal dimension has been deter- For longer time periods, more terms in the Fourier series
mined to be 1.71[2]. Mean-field calculations predict were needed, but this is only to be expected; if only one term
D =5/3[3], which indicates that, in two dimensions, some-Were kept in the Fourier series the object would be a circle
thing is lacking in the mean-field approach. In higher dimen-and would grow with a radius proportional to the square root
sions the mean-field theory appears much more accurate.
One first-principles renormalization theory, based on the
branching nature of DLA processes, obtained the result that
D=1.661[4].

Another important analytic result was the derivation of
the electrostatic scaling law, which appears to be obeyed
numerically by the aggregatg§]. This law is used as an
essential step in the calculation of this paper.

Recently, another formulation of DLA was proposed,
based completely on conformal mappiri@g. A conformal
function mapped the unit circle onto the boundary of the
aggregate. In this formulation of the problem, the electro-
static scaling law followed almost automatically when con-
sidering the behavior of the first Fourier component of the
mapping. We investigated numerically the problem of the
importance of different Fourier components of the mapping.
It appeared that by directly simulating the dynamics of only
the first few Fourier components, results could be obtained
for short growth periods that were similar to those when the
full function was used. This suggested that it might be pos-
sible to develop a renormalization theory based on integrat-
ing out higher Fourier components, using techniques similar FIG. 1. Picture of a cluster grown using conformal growth
to those used in field theory. model.

A. Introduction
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of time. As more terms are kept, the object can grow fasteperturbation expansion is somewhat unclear.

than the square root of time by changing shape, but for any In addition, the perturbation expansion that will be used,
given number of terms, eventually the growth will be as thealthough looking very similar to those used in field theory,
square root of time. Therefore, it is expected that in thecannot be derived from a functional integral in any simple
renormalization grougRG) that follows there will be some fashion. This means that there may exist some doubt about
cutoff in the number of terms kept, which increases with thethe validity of field theory techniques in this problem and
size of the object. certain questions about the renormalization of quantities such

The above discussion is intended to motivate the RG tha®S noise and interaction. On the other hand, the major advan-
follows. Most of the discussion is done in more detail in Ref.f29€ Of the theory is that, by dealing directly with an analytic
[6]. function describing the envelope of the cluster, it provides a

Hope that such a scheme would work was provided b}yery natural means of defining different scales in the prob-

numerical evidence that the conserved quantitee mo- lem .af?d of coarse graining a clulster wh|_le only §I|ghtly
ments of the continuum growth law were very nearly con- modifying the solution of Laplace’s equation outside the

served by the random growth proceidd. For the lowest ~ClUSter.
Fourier coefficients, one would expect that the random

growth would be close to the average growth determined by B. Notation
the continuum law, while the higher Fourier coefficients A |arge number of functions will need to be defined in
would fluctuate more wildly. this paper. As much as possible, | will use the following

The paper is divided into several parts. First, the confornotations. Capital letters are used for functions, such as
mal mapping model for DLA is discussed and used to derive=, G to be defined latter, which describe the shape of a spe-

continuum equations for growth, essentially equivalent to thesific growing aggregate. Power series expansions of these
Shraiman-Bensimon equation for the Hele-Shaw problemynctions will be denoted by subscripts, so

[8]. These equations are heuristically modified to add ther(z)=F,z 1+ F;2°+F_,z '+ --. In the continuum limit

essential differences between DLA and its continuum limit:of these power-series expansions, to be appropriately defined
the presence of noise and the existence of a microscopigtter, where sums are approximated by integrals, the latin
cutoff. This leads to a model that is hoped to be in the samestters j,k,I,m,n,0 will be used as indices. One will see
universality class as DLA. Even if it is not in the same uni- terms such asS(j). Greek letterse, A, will be used for
versality class, it is similar enough to be of interest in itself. ytraviolet and infrared cutoffs in these continuum laws.
Second, under an adiabatic assumption, the equation {Sreek lettersy, Ao will be used for various parameters in the
modified to vastly simplify the time dependence, leaving al-models defined in this paper. Lowercase letters will be used
most a static problem. The adiabatic assumption makes pogsr functions that define growth rules for the aggregate.
sible the RG and perturbation theory calculations describeghese include the functiorfss,t defined latter. Latin letters
latter in the paper. The adiabatic assumption is justified by, , represent points in the complex plane. The lettezpre-
numerics and self-consistently by the RG itself. At this point,gents time, either as a discrete number of steps or as a real
before doing the RG, it is still possible to make some comy,ymber in a continuum limit. The numbers represent
parison to numerics based on the continuum representati%gb& while the functiom(j) is the step function. Unless
of DL.A' ) ) otherwise specified, subscripts attached to functions will be
Third, a perturbation theory is developed for the con-yseq to denote derivatives; thits is the derivative ofF

tinuum equation, with a well-defined set of rules for calcu-y;in respect tox. As an exception to this, the expression
lating correlation _functlons_. The perturbation theory requwesfx’e(z) will represent a function parametrized hyand 6.
some resummation of diagrams, where to calculate re-

summed propagators it is necessary to use a renormalization-

group approach. This RG forms the fourth part of the paper;

the calculations for the RG have only been done to lowest

order, producing an appropriate renormalized propagator and A model for growth is defined. From this model, the

vertex. Fifth, the adiabatic assumption is removed and th&hraiman-Bensimon equation is derived for a funcfotnat

renormalized propagator is used to calculate various expamaps the unit circle in the complex plane onto the boundary

nents in the theory. Sixth, the results are compared to nuef the growing object. Defining

merical experiments, the self-consistency of the approach is

discussed, and there is discussion of what may happen if the 1

computation is performed to higher orders. C=& 1)
Unfortunately, there are some disadvantages to the tech- z

niques used in this paper. After performing the RG, a smalhnd making some approximations, we obtain a continuum

dimensionless parameter appears, equal to 1/5. Expansiondsywih rule[Eq. (32)] that still includes effects of noise and
carried out order by order in this paperameter. This suggestite cutoff.

that the theory presented below is close to some trivial fixed
point at which the coupling would vanish; it is possible that
the trivial fixed point may be found by varying a parameter
a to be defined below. Since the RG has not as yet been The following model for DLA in terms of conformal
carried out for all values ofr, the existence of the trivial mappings leads to results that are apparently numerically
fixed point is not yet verified and thus the nature of theequivalent to DLA[6]. It should be noted that the RG in this

Il. CONFORMAL MODEL
AND CONTINUUM GROWTH LAW

A. Conformal model



RENORMALIZATION THEORY

FIG. 2. lllustration of effect off on the unit circle.

paper relies upon a continuum approximation to this model
this continuum approximation could also have been obtaine
from the lattice version of DLA without reference to the
conformal mapping model, but the conformal mapping
model provides a better justification for the continuum equa
tion.

In this method, we deal only with the analytic function
F, which is defined as the analytic function that maps th
unit circle in the complex plane onto the boundary of the
growing cluster. We introduce two parametersand \,
where =2 corresponds to DLA and, is some constant
determining the size of an individual random walker. To
grow the object, first pick a random poirt=e€'? on the unit
circle. Then calculat& ,(x), which is the derivative oF at
this point. We define

A=No(F(X)F3 (x))~ 2. )

The case ofx=2 will correspond to DLA and it is that
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whereF is a function that maps the unit circle in the com-
plex plane onto the boundary of the aggregate and subscripts
denote derivates with respect to time or to anglen the
circle. This law may be rewritten as

Re(F,/zF,)=1/(F,F}),

Re( Ft

wherez=¢'?. Finally, this second growth law may be rewrit-
ten as

(7)
|F
zF,

)=1/|FZ|,

; io

+e
d

deo . . z
Ft=sz S [FeFE(EN] 2 — 5.

®

This equation, the Shraiman-Bensimon equation, results

from substituting the smal- expansion of Eq(5) into the

equation(3) for the dynamics ofF, where F(f(z)) is ap-
oximated byF(z) +F,(2)[f(z) —z].

In the Shraiman-Bensimon equation, one may divide both
sides byzF, and then take the real part of both sides. This
will recover Eq.(7) and show that the two equations are
equivalent. Equatioii7) implies that the normal velocity of
the surface at a given point is proportional to the local elec-
tric field at that point.

Equation(5) may be rewritten agtaking #=0 for sim-
plicity)

z+Nz(z+1)/(z—1)=z+\z(1+2/z+ 2122+ 2123+ - - -).
)

case that will be considered from now on; other cases will berherefore, the effect of the integration over angle in the con-
briefly discussed in the conclusion. Then, in a given growthiinuum growth law is to project out negative Fourier compo-

step,F(z) is replaced by

F(fy,6(2), 3

wheref is a function that produces a small bump at angle

0, with linear dimension of the bump of the order of the
square root of. \, 6 are parameters that define the function
f. An explicit example off, ; is given by

+1+\/Z2+1-2 1A
z z “1x

12
1/2

1+\ 1
o7 (z+1)

-1 z
4)
For 6+0, we havef, ,(z)=€'’f, (e 2).
In the smallx case,f reduces to
z+Nz(z+e'%/(z—¢€'?) (5)

nents in\ considered as a function of angle. The factor of 2
difference between the zeroth component and all other com-
ponents will be important later.

It will also be useful to define a continuum law for an-
other functionG, which is defined by Eq(l1). This function
has several advantages. The equatiomfaéhen becomes

A=AoG(X)G* (), (10

which has a simpler form than E@). This has a physical
interpretation thatc determines the strength of the electric
field at pointx. Also, G is the derivative of the inverse func-
tion of F and the inverse function df has a more natural
growth rule tharF does. That is, i ~*(F(z))=z, then un-
der a growth step with giveh andx, the functionF ~(z)
changes intof "}(F~(z)). The continuum law forG, as
obtained by using the definition & and the growth law for

and by averaging over angle we may determine a continuurhi» 1S

growth law. A picture of a cluster produced by this growth
rule is shown in Fig. 1. A picture of the effect of the mapping
f on the unit circle is shown in Fig. 2.

B. Continuum growth law

The continuum growth law for DLA is known to be

Z—HG(e”’)G*(ei‘g)z(z+e”’)/(z—e“’),
ar

d
Gt: sz

(11)

—ef g—iaew)e*<eie>[z<z+e”’>/<z—ei”>]z-

equivalent to the Hele-Shaw dynamics, which obeys the law

Im(F(F%)=1, (6)

It is also useful to consider the continuum growth laws for
the power series df andG(z). Writing
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F(2)=F1z'+Foz’+F_ 1z 14, (12) (1tezte’

f(Z)}\'(;:Z—FZ)\m, (16)

G(2)=GoZ’+G_1z "+ G_,z 2+ .-, (13
wheree is a fixed function of \), which is defined to be the

then Eq.(11) is equivalent to average value ok over the entire circle.
It is worthwhile also to define

(G,,-)tz(j—zk—l)klZ G_G_|G* ,o(k+1—m—j) A=1le. (17)

Then A represents the highest power ofhat will occur in
the growth law.
Let us make a change of variable. We will repldegz)

x20(j—K), (14)

where the discrete step function is defined by by the functionF((1+€) 1z) and G(2) by G((1+¢€) 12).
) At the same timd is replaced by (% €)f((1+ €) z). Then
1 for j>k the continuum law(8) for F becomes
o(i—=q Y2 Tori=k (15 do , ozt
0 for j<k. thsz E[FZ((lJr €)e'F((1+e)e')] Z g0
(18

An continuum equation may also be written for the power-

. . ; where now the cutoff dependence has been moved to the
series expansion df, but we will not need to use such an

derivatives ofF. The continuum law(11) for G becomes

equation.
There are some problems with directly applying the con- de _ _
tinuum growth law above, in any of its forms, to the discrete Gi= sz EG((1+ €)e'NG* ((1+e)e'?)

random process that defines DLA. The continuum law leads
to the appearance of cusps in the contour of the cluster after xXz(z+€e%/(z—e?),
a finite time and the continuum law is deterministic while the

discrete law is random. However, the continuum law must

have some applicability to the discrete cluster growth be-

cause, for example, the conserved quantities of the con- —Gf
tinuum law are approximately conserved by the random pro-

cess[7]. Thus we will try, in the rest of this section, to xX[z(z+€(z—e%],.

correct the problems in the continuum law so that it may be

of some use in describing the discrete, random growth proThe value ofe must now be calculated.

cess. Before the averaging process, the dependence of the cut-
off on \ is easy to determine by, for example, expanding the
functionf as defined by Eq4). After the averaging process,

it is not necessarily the case that the average cutofill be

The above formulation of the problem suggests a methodjetermined in the same way from the average valua .of
outlined in this section, of inserting an ultraviolet cutoff into The averaging may introduce nontrivial behavior. Instead |
the growth law. This cutoff will be inserted by hand and thenwill ook for the dependence of on the cluster size; since
the parameter of the cutoff will be adjusted to obtain thethe cluster size and the averageofare related, this is an
correct microscopic scale. equivalent procedure.

In the discrete conformal mapping modelnever devel- Expanding the cutoff in the continuum growth law to lin-
ops cusps becaudeis always well behaved. The specific ear order ine yields an additional term in the equation for
form of f does not matter; all that matters is that the approxi-F, . This additional term changes E(Y) to
mate expansion forf given by f(x)=z+Az(1+2/z

(19

do ‘ ‘
5-G(1+ee)G* (1+e)e)
a

C. Ultraviolet cutoff

+2/z2+---) is only correct for small negative powers of |F,| zF,,

z. The power-series expansion bfis cut off at some point Re( Ft ZFz) =1/F —ZeRe( m) (20
becausd is well behaved. This cutoff depends anwhich

itself depends on the angteat which growth is taking place. The additional term may be written as

The approximation made in inserting the ultraviolet cutoff

into the continuum law is that the cutoff in the power-series Fsg

expansion fof depends only the average valuenobver the Zelm( FglF gl = 2¢/R, (D)

circle at the time of a given growth step and not on the exact .

value of A where the growth is occurring, where the depen-wherez=e'¢ andR is the local radius of curvature. This is a

dence on the average valueofis chosen in such a way as surface tension term.

to produce the correct microscopic scale in the DLA growth The basic idea will be to adjust to produce the correct

process. size for microscopic features; this size is the size of an indi-
Then a simplification follows. Suppose the regularizedvidual walker in the lattice formulation of DLA. A dimen-

form of f is chosen to be sional analysis argument may help understand the size of the
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cutoff. This dimensional analysis argument will relate themately circular with a small bump on it, then the dependence
dependence of the cutoff on a macroscale to the dependencé A on the cluster size is correctly given by Hg5). The
of the cutoff on a microscale. approximate circularity means that instead of simply stating
The functionF(z) may be assigned the dimension of that the electric field is proportional todand the radius of
Iength andz may be made dimensionless. This means tha&urvature is proportiona| to a?’ we keep track of the pro-
we are interpreting as a parametrization of the cluster. Then portionality constants in terms &, and then directly show
both{\ ande are 'dimensior)les.s.. We know thatmust be a  that ex(ry/F;)*2 The advantage of the dimensional argu-
function of the size of an individual walker, but then since yent is that it is possible to make this argument without any

the dimensional a_rgument implies that is dimer)sionless,_ assumptions on the macroscale of the cluster; the depen-
A must be proportional to some power of the ratio of the SIZ8ence ofA on ro follows from microscopic considerations

of the object to the size of an individual walker, as this is the, 4 11 dimensional analysis argument then yields the de-
only way to form a dimensionless number. ltgtdenote the

A pendence orf ;.
length scale of an individual walker. One might worry that for the actual aggregate the poles
Let us see how to measure the linear size of the object. 9 y g9reg P

Recalling the expansion &f in Fourier coefficients given by will not necessarily be §|mple poles. As HaIse'yaI: have
Eq. (12), by a theorem on univalent functiofi@] the size of shown[10], the surface is described by wedges with a non-
the object is at most 4 timeB,, the leading term of the zero opening angle and the singularities exist on a fractal set.

power series. Asymptoticallf§, will measure the size of the However, the continuum growth law of E¢L1) produces
object. only simple poles inG. It is only the dynamics that lead

To fix the minimum radius of curvature a§, the size of apparently to the creation of nonsimple poles, via an accu-
an individual walker, the cutofé must be chosen so that Mulation of simple poles. Therefore, the cutoff will be im-
e/R, the surface tension term, balances the electric field aRosed as if the poles were simple.
the given radius. To determine the radius at which they bal- Because the object grows, increases with time. This is
ance, we need to make an assumption about the singulariti&hat leads to nontrivial dynamics and to a fractal dimension
of G. Let us assum& has simple poles and therefdfe has  less than 2. If instead of varying with time the cutdffwere
simple zeros. Suppose we look at points near a zef®,of held constant, then the aggregate would asymptotically grow
Without loss of generality, take this zero to be at pagt at aA-dependent rate proportional to the square root of time
wherezy=1- 4, with § some small positive number. Lo- and would have a fractal dimension of 2.
cally we find

D. Noise
F,oxz—z,. (22
From now on,G will be the function of interest ané

will be ignored. There are two reasons for this: the con-
tinuum law for G is simpler and noise may be more easily
inserted into the law foG. The actual growth ofs is not
deterministic; we may write the actual growth@fsymboli-

1/6= €l 62. (23 cally as follows: actual growth d& = continuum growth of

G + (actual growth ofG — continuum growth ofG). The

This implies that=e. Then, sinceR=1/5% we need that term in parenthesis represents noise. This noise term will be
e=+R. If R=rg, we find written as

The electric field az=1 is proportional to 1. The radius of
curvature atz=1 is proportional to 1#2. For the surface
tension to balance the electric field we require

exrd?, (24) sG'(2), (27)

The dimensional argument then implies that ] o . ) .
«(ro/F;)Y2 where now the proportionality constant is di- Wheres is a constant with dimensions of inverse time and

mensionless. This implies that G' is some function of. We approximate thaB vanishes
on average. If we expandG' in a series as
Aoc(Fylro)t. 25 G',z7'+G",z72+..., we will write the average of

G{G[* as

In the actual growthF, is changing in time, but, is con-
stant. Thus the time dependence /ofis determined byA
«F}2  As expected, the cutoff is increasing in time. If the Fafy _ s N

power-series expansion f@ is defined by Eq(13), then (GiG")=a;N() (28)

GOI 1/F1, (26)
whereN is some unspecified function. We will also assume
so that it is also possible to measure the size of the objedhat any average of sever@f can be written as a product of
using the power-series expansion®f pairwise averages. These are the essential approximations in
As a further explanation of the dimensional analysis arguthe noise.
ment, it may be directly shown that if the cluster is approxi- With noise included, we modify Eq19) to
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0 , , The symbolj in Egs.(30) and(31) will be referred to as
Gt:GzJ' 5,1+ €)e')G* ((1+e)e'’) a momentum since it will play a role in the perturbation
theory of Sec. Ill equivalent to that of a momentum in a

xz(z+€'%)/(z—e'?), perturbation theory for a field theory. We take E#4) and

(29) transcribe it to this continuum approximation. Noise is added
4o as in Eq.(29). The result is

—Gf EG((1+e)e“")cs*((1+e)e“")
Gt(j)=(1/,u)f dkt(j,k)G(k)f f dldmG(I)G* (m)exp

X[z(z+€(z—e'?)],+sG'(2).
X[=(I+m)/A]8(k+1—m—})26(j—k)+sG'(j),

The notationG' is used for the noise because, in the pertur-

bation theory, the functio’ will play a role similar to a (32

freefield in field theory. Doy T .
The approximations are justified for two reasons. Sinc%’iv;?;:g."i)z'i_scl)mai ?ﬁnérillg?ifgnqgﬁlgégf gfroﬁoirs'
the noise is essentially generated by the dynamics, that is, .a J q:

small amount of noise will be amplified by the continuum In;%f?;lte?a?rlg?grcithh:iﬁzgﬁgndg?fr?jl?;csg?;?e /str(r? las
growth, the dynamics should not be very sensitive to how thd" : LSImply

noise is inserted. This means that we need not worry abo(ftmounts to a redeﬁniti_on d(j.k). The functiont .Wi" ﬂOW.
the exact form oN(j). Second, since the actual growth law Under the renormahzatlon group. The exponentlal term is the
for -1 is rather simple invé)lving a function acting on appropriate version of the ultraviolet cutoff in the continuum

F-1 it is most natural to insert the noise inko %, or into limit. We define the continuous step functighwith by the

S L _ . L tioi15).
G, which is the derivative oF ~1. Inserting the noise into same equa : ) L
the growth law forF, which has a more complicated growth The effect of the cutoffx is twofold: the s function in Eq.

. : (32) has a nonzero width of ordes and hence a finite
law, may have a different effect on the overall dynamics. height. The quantity(0) is of order 14. Also in the defi-

, o nition of the noise, Eq(28) is replaced by
E. Continuum limit in momentum space

In order to make the RG calculations easier, | will also (G'(1)HG™(j))y=a(i—IN(j), (33
take a continuum limit for the Fourier components®fand . ) ]
G'. This will result in replacing the discrete sums of Etg) ~ Where again the function has a nonzero width.
with integrals. This amounts to a change in the geometry of BY rescaling momentum, the cutoffg and A may be
the growth; instead of parametrizing the boundary of thechanged, but the ratio of the two cutoffs will remain con-
growing cluster by a point on the unit circle, we will param- Stant. The purpose of the RG will be to integrate the upper
etrize it by a point on the real line in the Comp|ex p|ane_ cutoff from A to A — SA. Then, for the sake of Convenience,

In the neighborhood of a given point on the unit circle, the upper cutoff will be rescaled back fo The assumption
such asz=1, the unit circle is locally approximated by a iS made that wher is much greater thap this renormal-
straight line. As we look at shorter and shorter length scaledzation does not change the essential physics of the system.
this approximation becomes more and more accurate. The Physically, Eq.(32) describes the problem of DLA
equatiorz=e'? is approximated bg=1+i6. Thus, on short growth in the upper half of the complex plane, where the

scales, in the neighborhood o1 we can approximate ~ boundary of the growth is parametrized by a painon the
real axis. The cutoffu has the physical interpretation that
F(z2)=FZ'+FoZ°+F_z7 1+ ... growth only occurs in a finite width on this axis.

For use later, let us define a function&ll such that

~F1(1+i0)+Fo+fde(j)e*iiH, (30 .
W[j,G(k),G(l),G*(m)]

G(2)=GoZ’+G_12 "+ G_z %+ -
=) [ akt o0 [ [ atamen (m

~GO+J djG(j)e "?, (31
xXexg —(I+m)/A]S(k+1—m—j). (34

whereF(j) andG(j) should be considered as being defined . . )

by the above equations. They are defined so jthatalways 1hus  the right-hand  side of Eq. (32 is

a positive quantity. This approximate form f@(z) will  WI[j,G(k),G(1),G*(m)]+sG'(j). The functionalW is lin-

break down foré of the order of 1 rad. This implies that the €ar in each of its last three arguments.

Fourier expansions will break down for low valuesjofThis

has the effect of an infrared cutoff; the cutoff will be jabf Ill. ADIABATIC ASSUMPTION

order u, which is a number of order 1. The cutoff is AND NUMERICAL PREDICTIONS

constant in time, unlike\, but under the RG we will find it

convenient to rescalg. After introducing the equation of

motion appropriate to this approximate expression Got An important approximation is made, which changes the

will then explain the effect of nonzera on this equation. problem to one of describing an aggregate that is statistically

A. Adiabatic assumption
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unchanging in time. In the end, we will describe aggregategiven size in the changing cutoff problem one can determine
whose average size and roughness remain constant. the cutoff from the size of the cluster, using E&5), and
The cutoff A is slowly changing in time. As the object then calculate the growth rate of a cluster of the same size in
grows,A changes more and more slowly. The exact structurehe fixed cutoff problem, using the rescaling trick to deter-
of the cluster at a given time depends upon its growth at aliine how quickly that cluster grows.
previous times, but since the object spends a long time grow- ynder RG scaling, in fact, we will find that the equation
ing with an approximately fixed cutoff, it is expected that the of motion changes in such a way thgtchanges; in facts
structure of the object at a given timavith resulting cutoff may acquire momentum dependence. Before RG scaling
A is determined only by its growth during previous times i pe negative, since is increasing, causing to de-
k V_I\f'.th res,ultm% ChUtt?\ff,S.A sucz_f';hat/\ f'sr:]’iry .ﬁ'gse 00 crease. After RG flow, an appropriate combinationt
- Timest” such that\ ™" Is very different fromA will be so 54 goes to a universal value. The adiabatic assumption

far in the past that we do not expect them to alter the struc- . : . T
ture of the cluster. will mean that we assume that at every instant in the original

Furthermore, if the cutoff is fixed, the equations of motionDI‘A prob_lem, .th(_a functiorG is desc.nbed .by a function in
are homogeneous, in the sense that up to a rescaling of tin’?Ee 'Of_‘g't'me limit of the p_robl_em with a f'x‘?d cutoff and a
and noise, two clusters, which differ only by a change offéscaling terms, wheres is picked to obtain the correct
scale, will have exactly the same growth for the same ranoVerall scale foiG. _ _
dom noise. More precisely, &(t) is a solution of Eq(29), On average(G, in Eg. (35 vanishes. What is left 06,
with fixed cutoff A and given nois&', then for any number after the rescaling process is just fluctuations about the aver-
b, the functionbG(b%) is a solution of Eq(29) with the  age growth. There may in fact be solutions such tBat
same cutoffA and with noisebG' and's replaced byb?s. vanishes identically, but this is unimportant. In the RG, even

For a large object it is then reasonable to make the adiatith G; nonzero, thes term and interaction term@® term)
batic assumption that, despite the changing cutoff, up to will determine the nature of the aggregate. As will be shown,
rescaling of the cluster, the statistical properties of the funcunder RG flow, theG; term flows under RG so that the
tion G at some given time with some given cutdffare well ~ fluctuations inG,(j) decrease apdecreases. The lower mo-
described by evolving an arbitrary initié for a sufficientty ~mentum terms then, in the unrescaled problem, will have
long time using the equations of motion with the cutoff heldtheir growth more accurately given just by tis& term.
fixed at that value\. First, we will analyze the dynamics of Fluctuations about this overall growth will be less.

G in the fixed cutoff problem and then we will use the adia-
batic assumption to relate it to the changing cutoff problem.

. - B. N ical icti
Let us take Eq(32) and, holding the cutoff fixed, make a umerical predictions

dynamical rescaling of the functioB as it evolves under It will be worthwhile to mention at this point that already

this equation. After every time step of lengtit we will some definite numerical predictions can be extracted from
rescaleG to (1—sdi)G. Then the rescale® satisfies the the above work. Since the RG that follows relies upon the
equation of motion continuum equations, it is good to independently check the

validity of these equations for describing DLA.
. L _ If any RG is to hold, the coefficients d& must obey
SG(J)’LGt(J)_(l/'“)f dkt(l'k)G(k)I fdlde(I)G* some scaling law. In Sec. VIl such a scaling law will be

shown numerically. The coefficients decay with a power law.

x(mexd —(I+m)/A]o(k+1—m—j) It will be the purpose of the RG to calculate this power law.
< 20(i —K) +sG(i). 35 Since the absolute value &f is equal to the local electric
-k M 39 field, there is a close connection betweggnand the multi-
On average, the rescal&l has constant size. fractal exponents of Ref§12—14. These exponents are de-

The amount by which the cluster is rescaled per unit timdined by Eqgs.(69) and (73). The (2n+1)th power of the
s is the sames referred to in Sec. Il D. It is simply a matter electric field, integrated over the object, is given by
of notational convenience to chose these two numb&rhe  [dO[G(6)G* (0)]". This integral over can be converted to
the same. Any other choice efin Sec. Il D simply amounts an integral over components Gf in momentum space. Cut-
to a redefinition ofG'. ting those off at momenta is equivalent to cutting the real

The functionG before rescaling is growing in time. To space integration off at a length scale of ordef2. Since
determine how rapidly an unrescaled cluster of given sizéhe multifractal exponents are defined in terms of the scaling
and given, fixed cutoff grows, we may follow this procedure. of powers of the electric field against length, we obtain an
Evolve a rescaled cluster using E@5) with an's chosen equivalent definition of multifractal exponents in terms of
such that the rescaled cluster is of the desired size. Thesgaling of powers o6 against the cutoff. This discussion of
from the value ofs needed to maintain the desired size,exponents will be done in more detail later, after the RG
determine the growth rate of the unrescaled cluster. For thpermits us to calculate these exponents analytically.
unrescaled cluster, the averagedfog(Gy(t))/dt is equal As a check of the adiabatic assumption, a numerical simu-
tos. lation was performed using the original discrete conformal

Under the adiabatic assumption, we can now take thenapping model defined in Sec. | B. In this simulation, after
growth rate for the fixed cutoff problem, this growth rate every growth step, the object was shrunk by some constant
being a function of the size of the cluster and the cutoff, andactor. Visually, we could not see any difference, in the
use it to determine the growth rate for a cluster with a changgrowing region on the surface, between the cluster shrunk
ing cutoff. To determine the growth rate of a cluster of aafter every growth step and another cluster that was not
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shrunk. A calculation of the fractal dimension also failed toexpansion not in the two-point correlation function of the

show any significant differences. noise, but in the two-point correlation function &f itself.
Further, a resummation of series leads to a resummed propa-
IV. PERTURBATION THEORY gator(defined below Unlike the Navier-Stokes perturbation

theory for turbulenc¢15], it will not be necessary to define
A perturbation theory is developed for the equation ofa resummed interaction vertex. The above procedure leads to
motion (35). This permits, in principle, the calculation of any a well-defined perturbation series in “skeleton” diagrams.
correlation function of the theory in terms of noise averagesOne point that will be necessary in the following treatment
In practice, a resummation of the series is employed thathat is not necessary in the case of turbulence is @it a
expresses multipoint correlation functions in terms of two-complex field, and thus the propagators will be directed

point correlation functions. lines; the notation that follows will therefore differ from that
seen in Navier-Stokes problems.
A. Perturbation rules The perturbation theory is constructed as follows. The

Using the adiabatic assumption, the equation of motionequatlon of motior(35) permits us to solve foB(j) in terms

(35) looks very much like the variation of an action. Al- Of & cubic inG(j). Using the definition o in Eq. (34) we

though there no such action can be found, a perturbatio}"'t€
theory will be developed, based on this analogy, to permit

; | a\ "t .
the use of techniques from field theory. G(j)=Is(j)+—=] {W[j,G(k),G(1),G*(m)]
This technique is very similar to that used, for example, in at
solving the Navier-Stokes equatifb5]. Such a perturbation +s())G ()} (36)

theory has been known for many years. Before proceeding

with the details, let me summarize the essential attributes. Avheres(j) is used instead o becauses may, under RG
perturbation theory is developed by expand@®gn powers flow, acquirej dependence.

of the noiseG' and expanding correlation functions @fin The operatofs(j)+d/dt]~* may be expanded as a for-
terms of two-point correlation functions of the noise. Sincemal power series ind/dt. In Navier-Stokes perturbation
the noise is amplified by the dynamics of Eg5), this ex-  theory, this operator is referred to as the propagator, in anal-
pansion is not expected to converge. However, after resunmegy with a similar object in field theory.

mation of the series, it becomes possible to replace this by an We may then iteratively solve E§36) as

1a g
G(j)=?DVV[J',G(k),G(l),G*(m)]vLGf(j)+o(a)

ZLW[J' G'(k),G'(1) Gf*(m)]JrGf(J')+i
s(j) ' ' s(})

><\7V[j,;—k)\fv[k,G(n),G(o),G*(p)],Gf(I),Gf*(m)]+.--+O %)

—— (37)

The iterative solution of Eq.36), by solving for the values a&(k), G(I), andG* (m) on the right-hand side, is an expansion
in powers of the interaction This is simultaneously an expansion in powers of the nGiSeThe zeroth-order and first-order
terms int and one of the second-order terms have been written in(&g. At any point in the process, one can stop the
perturbation expansion by setti®(j)=G'(j) plus higher orders i@/at. Thus, in the perturbation expansion fdrone sums

at every stage over two possible expressionsor

G(j)=[1/s(j)](1/,u)f dkt(j,k)G(k)f fdIde(I)G*(m)exp:—(I+m)/A]5(k+I—m—j)20(j—k)+0 %) (38)

or like a mass term. This leads to a series of diagrams&or
These diagrams have no loops.
P The quantities computed as described above depend upon
G(j)=Gf(j)+O(—). (39) the specific realization of the noise. Since we are interested
dt in average quantities, we will compute correlation functions.
A correlation function is defined as an average over noise of
These operations can be represented graphically wita product of severab(j),G* (j) with the same total number
Feynman diagrams, in whidhis an interaction term anglis ~ of G andG* and will be written as
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G and G*. The G(j) line for at(j,k) vertex is drawn as
entering, theG* (m) is drawn as entering since it is complex
conjugated, while the other lines are drawn as leaving the

g(1) vertex. Thej andk lines will always be drawn parallel to

each other in & vertex; thel andm lines will be drawn at an

angle. The distinction must be made betwgek and|,m
becausg andk enter intot while | andm are summed over
blindly.

g(3) g(k) The rules for diagrams for correlation functions may be
summarized as follows. To calculate the average of the prod-
uct of G(j1)G(j2) - G(jn)G* (k1)G*(Kp)- - -G*(Ky),
wherej; ,k; are various numbers, draw one external line for
each term in the correlation function. The termsaSrshould
be drawn as entering the diagram with momentymwhile
those forG* should be drawn as leaving the diagram with
momentumk; . Draw all possible diagrams, assigning a fac-
tor of t(j,k)26(j—k) to each vertex and a factor of

V4 - 1/s(j) +O(al at) for each line, while conserving the sum of
g(3) 7N glk) ingoing and outgoing momenta at each vertex. For each
noise contraction assign a factor &f(j)N(j). Finally, the
FIG. 3. Diagrams illustrating interaction vertex and contractionPerturbation theory may give rise to a term suchoge).
of noise terms. The first diagram results from setting This will arise from something likefdjd&(j —k)6(j —k).
G(j)=WI[j,G(k),g(1),G*(m)]. The second diagram would oc- While 6(j) is O for negativg and 1 for positive, 8(0) will

a)

glm)

b)

cur in evaluating Gf(j) G™ (k))= 6(j —k)N(j). be taken to be equal to 1/2, according to Etp). This is a
result of the factor 2 difference between powersaoh the
(G(j1)G(j2)- - G(jn)G* (k1)G* (kp) - - - G* (Kp)). expansion foff; this difference was discussed in reference to

(40)  Eq.(9). Alternately, if we recall that alb functions should
be assigned some nonzero width, then the above integral
When computing these averages, the average over noigwvaluates to 1/2.
must be taken. This is done by taking noise terms resulting
from the above expansion fd& and G* and contracting

. . . L - B. Resummatio
them with each other in all possible pairwise fashions. Each summation

contraction of two noise terms at momerjt leads to a This theory exhibits a spontaneous breaking of circular
factor 8(j —k)N(j), as given by Eq(33). This leads to dia- Symmetry. One starts the growth process with a circularly
grams with loops. symmetric cluster, which implies th&(j)=0 for j >0, but

Figure 3 indicates how diagrams for the theory are drawnthis is not a stable state. Instead, the dynamics evdb/és
There are three types of diagrams that may be drawn. Thegne of an infinite number of states with nonzesgj), al-
are drawn in essentially the same fashion, except that diffethough on averag&(j)=0 for j>0. If we impose some
ent meanings are assigned to the external lines and differehpundary condition, such &8=1 at timet=0 and look at
numbers of noise contractions are included. A diagram for & for much later times, the perturbation theory in a small
correlation function has one external line for each term in thenoise term causes us to reach large valuessofHaving
correlation function to be computed. Diagrams for quantitiedmposed these boundary conditions, the noise is amplified by
other than correlation functions may have different meaningghe dynamics and will grow large.
assigned to the external lines. These diagrams all involve one This large growth of noise means that if we evaluate the
or more external lines being expressed as a function of thevo-point correlation functiofG(j)G* (k)) we will obtain
other external lines. This may occur either as an expansion gfome answer of the formd(j—k)|G?(j)|a, Where
G directly in terms of the noise or as a piece of a diagramG?(j)|ay is an appropriate function of and |G2(j)|,, is
that occurs inside another diagram. For example, the diagramuch larger tharN(j). In the long-time limit,|G%(j)| ., is
(@) in Fig. 3 is not itself a correlation function, but representsnot a function of time.
a term that may occur inside a computation of a correlation Then, we may imagine that, when calculating any other
function. For this diagram, the line f@(j) is expressed in correlation function, at any stage in the perturbation theory,
terms of other lines, which in turn may be set equal to thetwo lines that were contracted to obtain the vaNfg) can
noise or may be further expanded. instead have their contraction dressed with additional inter-
The notation for diagrams is the following: crosses denoteactions to converN(j) to |G?(j)|.,. Two important points
contractions on noise and the directions of the lines indicatenust be made about this procedure. First, it is important that
complex conjugation and orientation within the diagram. Athis value |G?(j)|,, is completely uncorrelated with any
line may be said to carry momentumwhen two lines are other values oz in the diagram; all correlations are already
contracted, they must carry the same momentum and all exaken into account by the interaction vertices of the diagram.
ternal lines are assigned a momentum determined by the paBecond, we must be careful to avoid overcounting; since
ticular correlation function to be computed. tAvertex has each contraction in a diagram includes many diagrams in-
two lines entering and two lines leaving, corresponding tovolving dressing the contraction in various ways, we must
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a)

+ ...

FIG. 5. Perturbation expansion in the example theory.

\ as follows: draw all diagram&ubject to the rules forbidding

overcounting, with appropriate external lines, assigning a

factor 16°f(j) to each line, a factot(j k) 8(j —k) to each
FIG. 4. (a) Possible contribution to the average |@2|. (b) vertex, and afaCtOfS(eﬁ)z(j)|Gz(j)|avt0 each contraction on

Possible contribution te®". (c) A diagram that should not be con- noise, while conserving momentum everywhere.

sidered if the propagators are already drawn in terms>f

<)

not further dress these contractions. C. Example calculation
For notational convenience, | will continue to wri@' It will be useful to give a simple example of applying
everywhere, but now such a perturbation theory to a noninteracting system. For

(G'()G™ (K))= 8] — k)| G())| (a1) example, consider the simplified equation of motion
- - av-

Gi(j)+sG(j)=t(j,})G(j)G(0)G*(0) +sG'(j), (42

G' is similar to a free field in field theory. Any average
product of severalG' can be decomposed into pairwise
products. This is the resummation of noise into two-pointwheret(j,j) is proportional toj —2j—1, which is equal to
correlation functions of G that was mentioned above —j—1.Let us suppose th&' is constant in time, to sim-
in the comparison to Navier-Stokes perturbation theoryplify the problem further. Then, let us define the time scale
G'(j) is now an unknown function of; one of the goals of S0 thatt(j,j)=—j—1. Let us pick the desired scale of the
the RG will be to determine the dependence of this functiortluster so thaG(0)=1. Physically,G(0) is very large com-
onj. pared to the nois&(0). This means that for a stationary

Similarly, the functions(j) can be resummed. Any single State(after all, s is adjusted to produce a stationary average
line between two interaction vertices, which would normally size we may letG'(0) be small and we neesl approxi-
be represented by a factor ofs1ivill instead be represented mately equal to—1.
by 1k°f, where s°f takes into account possibilities of =~ Now that the values os,t are fixed, we may find the
dressing that line, without interactions with other lines.solution using either perturbation theory or a straightfor-
s® is an “effective” s. This is the resummation of propaga- ward ~solution. The latter method gives—G(j)
tors. =—-G(j)—jG(j)—G'(j). Therefore, G(j)=G'(j)/j and

As a result of these two resummations, to avoid over{G(j)G*(j))=N(j)/j2. This noninteracting system is
counting we must require that we do not count diagrams irstable.
which some portion of the diagram that contains interactions The perturbation theory foGG(0) is slightly tricky. If
has only two lines leaving it. See Fig. 4 for examples ofwe ignore the time derivative, we can reach only small val-
contributions toj, contributions tos®, and diagrams that ues ofG(0) in the perturbation expansion. However, in fact,
cannot be included in the theory as they would overcounfor the givens and t, a small G'(0) produces a large
contributions. G(0), under the time evolution. Let us suppose that this part

As one will be able to verify after performing the RG of the process has been done and we obtain a resummed
calculation, within the formal power-series expansion ofexpression fo{ G(0)G*(0)). This resummed expression is
(s+dlat)~1, one may neglect all terms i gt in the RG  |G%(0)|,,=1. Then we may ignore the time derivatives and
calculation of Sec. V. Terms flow only to higher powers of obtain the expression for the high&(j) in a straightfor-
alot. Becaus@G2(j)|,, is taken to be constant in time, terms ward fashion.
with 4/t will drop out in many places. Then, the perturba- The perturbation theory expansion®{j) gives the infi-
tion rules, ignoring the time derivative, may be summarizedite sum
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G(j)=G'(}) +[IG*0)[at(})/sIG'(j)

—
+[|G20) |t ()SIPGI (). (43 W

Y

This is equal toG'(j)[1—|G?(0)|.t(j)/s] *=G(j)/j.
This perturbation expansion is shown in Fig. 5. Each line
terminates by settings equal to the noise. Similarly, the
perturbation expansion to the correlators gives a product of FIG. 6. Diagram contributing to the renormalizationssf.

two infinite sums. This product is represented in diagrams bx/ . ) ] ) )
taking the sum in Fig. 5 and noise contracting it with its V B, I will consider other possible diagrams and explain why

complex conjugate. they are neglected. Throughout the RG calculation, when |
One may defines®f(j) for this simple theory: the dia- Write [G*(A)lay, | actually mean
grams of Fig. 5 define the inverse gf". Therefore Zol/A
2
$(])=5-1(1)|G2(0) ., (44 J a5 49
which simplifies Eq.(43) to G(j)=[1/5*"(j)]1sG'(j). This is just a weighted sum ¢&2(1)|,, atl of orderA, and
due to the smooth cutoff it is this weighted sum that will
V. RENORMALIZATION-GROUP CALCULATION enter into all the diagrams considered.

The diagrammatic expansion fef will now include the
We investigate the effect of changing the cutoff in thediagram shown in Fig. 6. This changs¥/(j) to
equation of motion. This leads to the introduction of dia-

grams to describe the changes in the theory as a result of S¥M(j) —1(j,j)|G2(A)| WA . (47)
lowering cutoff. It is shown how to incorporate these into a _ _ _ o _
change ins,t. The fixed point is found. The term 2(j —k) in Eq. (45) gives 1 in this case, as dis-

cussed in the perturbation theory rules.
Additionally, the new term in the equation of motion can
give rise to a diagram as shown in Figa) which can be

In the RG calculation, first the cutoff is lowered frofn  represented by changingj,k). This arises from substituting
to A—6A. If the cutoff is imposed in a smooth fashion

(interaction termt(j,k)G(k)G(I)G* (m)exd —(+m)/A]), s*f(1HG(1)=G (m)t(l,m)G(n)G* (0) S(m+n—1—0)
the change in the theory under a change in the cutoff can be

obtained by adding an additional term to the equation of x26(1—m) (48)
motion (35), equivalent to the original cubic term, except and

that the cutoff exp—(I+m)/A] is replaced by
(6A)o{exd —(I+m)/ATIA. This new term is

a)
(1/M)f dkt(j,k)G(k)f fdlde(I)G*(m)(éA/A)
X[—=(+m)/Alexd —(1+m)/A] \/

A. Lowest-order contributions to RG flow

XOo(k+1—m—j)26(j —k). (45

The sum of the original interaction term plus this new term is
equal to the interaction term at reducAd This term will
have a circle around the vertex when it appears in a diagram.
Because this term is small when the external momenta
I,m are small, it does not directly enter into correlation func-
tions of the low momentum theory. It enters indirectly, in
more complicated diagrams. We will then consider various
such diagrams that include this term and show that, for the
simplest such diagrams, these diagrams may be rewritten in -

terms of a change is andt. B
This procedure has some slight logical differences from

b)

other RG procedures. In other procedures, the cutoff is often
imposed in a sharp fashion at some momentum. Here the
cutoff is imposed in a very smooth fashion; | believe this has

certain logical advantages. This procedure is similar to the FiG. 7. (a) Diagram contributing to the renormalizationtof(b)
technique of counterterms in the original formulation of Another possible contribution to the renormalizatiort GThis con-
renormalization in field theory. tribution is ignored. Certain difficulties are encountered in drawing

First, | will evaluate the simplest diagrams to which this this diagram. If the interaction were drawn in standard form, many
new term gives rise and do the RG calculation; then, in Sedines would need to cross each other.
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G*(m)=G™(m) (49) [1+3r(SA/A)]L. (56)

into Eq. (45), taking! of the order ofA. The result changes Naively one might expect that there could also be an over-
t(j,k) to all rescaling of boths andt by a factora. This would leave
] . o ) off G unchanged. Taking derivatives of $iand Inf) with re-
t(j, k) +2(A )t () K UA A +K=])|GHA+K=])|a/S™.  spect to Ing) (since the ultraviolet cutoff is lowered to
(50) A—6SA and then rescaled back tb, it is actually u that

Assuming thatA is a high momentum angi,k are low changes in this procesdor s andt to be stationary we find

momenta, them\ +k—j=m is a high momentum. One does r— (At G2 A Js+a=0 5
not use terms arising from substituting*(1)G(I) (AUGHM)]ay ' ®7)
=G(n)t(l,n)G'(m)G*(0), instead of the substitution of 3r+2(A/p)t|G3(A)|/s+a—1=0 (58)

Eq. (48), because such terms involve too many high-

momentum components @&. The diagram corresponding to This in itself does not provide enough information to extract
this term is shown in Fig. (). Such terms should be ig- anything useful, because having battand a means thas
nored, as they will be small when determining the behavioandt can be scaled to arbitrary values.

of the system for momenta much less tiarRemember that However, in facta=0, as will now be shown. The time
the cutoff is imposed, in the original equation, Gifl) and  derivatives of Eq(35) were ignored in the RG because they
G*(m), notG(k). This means that the presence of the high-did not effect the flow o andt. We can still use arguments

momentum ternrG* (m) will make such terms small. about the time derivativ&,(j) to show thata=0. We can
All momenta are now rescaled by/(A— §A) to put the  use Eq.(35) to calculateG,(j) of the renormalized, rescaled
ultraviolet cutoff back at\. This changes®(j) to problem in two ways. One way is to tak®(j) for the prob-
ot i n et g lem before renormalization and rescaling and then rescale the
s7(1)—i[ds™())/d]j](6AIA). (5D momentumj and multiplyG,(j) by [1—r(SA/A)] in anal-

Because of the integration in the interaction term and the'9Y with Eq.(54). Another way is 10 use the renormalized,

f . .
one power ofu extracted fromt(j,k), the dimension of fescaleds, t, andG' in Eq. (35) to computeGy(]). For these

. : _ two methods of computing,(j) to give the same result, as
|tr(1]g ’kt)hclas fﬁggﬁl(l)rt&j(rp)o?eecnot%nz. Therefore, under rescal required by the fact that they describe the same system, it

may be shown that

t(j,K) = j[at(j,K)/aj 1 SAIA) — K[ at(j,k)/K](SAIA) Ao, (59)

—t(1. K (SAIA). 52 A simple way of stating the argument leading to this result is

that, although if time derivatives are neglected in E2p)

the equation is invariant under multiplying the three terms

s, t, andG' [here referring to the noise before resummation,

that is, the noise described by E§3)] by the same constant,

such a multiplication does not leave the time derivatives in-

variant and so should not be allowed in the rescaling part of

the RG.

t(j,k)=t(j —k). (53) Then, the fixed point equation&7) and (58) can be
solved for

Combining the terms resulting from the integration, Eq.
(50), with those from the momentum rescaling, E§2),
every term in the change dfj,k) either is a function of
(j—k) or would be a function of j(—k) if t(j,k) were a
function of (j —k). For a stationary point, we then require
that

If t(j,k)=t(j—k), then similar logic using Eqs47) and 5
(51) requires thas®(j) becomes a constant. These require- r=(A/u)t|G*(A)|q/s=1/5. (60)
ments of momentum independencesdf likely do not hold This result forr is the main result of the first-order RG.

at the extreme infrared for any true system, or else the equa- __ .”"" . O ;
tion of motion[Eq. (35) using renormalized ands] would Th'r?]g“t/%s the re??i‘,!”%ﬁ“(l) with j. The magnitude of
have no nonzero solution, but in the scaling region betweeﬁ;(J) ustdecay ag == Thus

the infrared and ultraviolet they will hold. For the rest of this 1G2(j)]aj 25, (61)
subsection, the numberis the constant to whick® flows Y
under the RG and the numbeis t(0). The combination A/u)t|G?(A)|, /s is invariant under a

At this point, | have done the first part of the RG for the rescaling ofG of G by Eq.(54) and a corresponding rescal-
two numberss andt. It is now necessary to rescae to ing of s andt by Egs.(55) and(56) and gives us the dimen-
leave EQ.(35) invariant under the renormalization and res- sionless coupling constant for this problem. From E&f)
caling. LetG be rescaled to the dimensionless coupling constant is 1/5, which is not in-

finitesimal; however, after RG flow, the problem is no longer
[1-r(SATA)]G. (54) strongly coupled, as the constant is less than 1.
The reason that a factor of 4/was removed from
t(j,k) is now clear; this makes the above coupling constant
[1+r1(SA/A)]s (55)  truly dimensionless. As a result of the removal of the factor

of 1/u, the dimension of(j,k) is (momentum) . However,
and a rescaling of to |G2(j)| 4 has the dimension of momentum; this is because,

This implies a rescaling o to
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taking G to be dimensionless, Ed41) gives |G2(j)|, a -
dimension inversely proportional to th& function. The§ ®
function has dimension of inverse momentum and thus the
end result is to makégG2(j)|,, dimensionless. »
As a further comment on the dimensionality of the cou- K/
pling constant, recall that th& functions have a finite height

proportional to 14. This finite height changes under the RG, \/

which implies a rescaling dfG2(j)|,, under the RG flow; by b)

multiplying t by 1/u we shift this rescaling ontb. >
An argument was made above, leading to Es), in-

volving G; for the problem before and after RG. We may

extend this argument and also say something about the mag-

nitude of G,(j) for different j. The quantitiessG andtG?

remained constant under the RG, as a result of the rescalings

of G, s, andt and the renormalizations sfandt, from Egs.

(47), (50—(52) and(54). We also need, to remain constant - \_/
since this is also a term in E¢35). Suppose the character-
istic inverse time scale for fluctuations@j) is w(j). Then

Gi(j) is of orderw(j)G(j). For this combination to remain
constant,w must change as a result of the rescaling af e
the RG. In fact,w(j) must have the same log derivative

under RG thas does, although the log derivative fesults
from renormalizatiorf Eq. (47)], while the log derivative of
w(]j) results from rescaling. This implies that

w(j)j*e. (62 ¥

This means that for smallgt the time scale for fluctuations

is longer. Returning to the original problem, as described by
Eq. (29 with a time-dependent cutoff, this means that the
lower Fourier coefficients grow at a roughly constant rate.

This self-consistently justifies the adiabatic assumption of
Sec. Il

e)

B. Other contributions to RG flow

Y

senting the rescaling of the cutoff, may enter into additional

One may imagine that the new term of E¢5), repre- >—V<Z

diagrammatic contributions. Various possibilities are shown

in Fig. 8. | will show that, for low-momentum behavior,
these terms are unimportant and then discuss in more gener-
ality why other contributions are negligible.

One may check by hand that the first example is small if

external momenta are much less than The second ex- £)
ample will be discussed below. The third example vanishes
due to phase-space factors. The fourth example vanishes due

to phase-space factors if the two lines leaving the top of the
diagram are close in momentum; this means it does not alter
the RG flow oft(j,k) whenj=Kk. In the rest of the section,
various other diagrams will also be said to “vanish”; this
will only mean that they vanish when considered either at
low momentum or, if they contribute to the RG flow of
t(j,k), when considered gt=k.

The fifth example, a contribution to the six-point function, In order to indicate in general why such contributions
will be seen below to be small when calculating correlationamay be neglected, | would like to define some additional
of only four, and not six or moreG(j). The sixth example terminology to describe certain paths and contractions in
should not be considered when the rescalingG#(j)|,, is  these diagrams. When considering a contributios®fp one
taken into account; sinceA( u)|G2(A)|,, is stationary un- may follow one line through the diagram as follows. Start
der RG flow, such a diagram is canceled by the various reswith the incoming line. At every vertex, if one enters with
calings. G(j), follow out alongG(k), notG(l) or G*(m), where the

FIG. 8. Other possible contributions in the RG flow.
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roles ofj,k,l,m are as in Eq(35). If the line one is follow- of G(I) and the lineG* (m) cannot be dressed by any inter-
ing is contractedthis will be referred to as aexceptional action vertices. Again due t6 functions, the main line of
contraction with a G*(m) leaving at vertex, follow out G(l) can include only one interaction vertex tht has both
along G(l) of thatt vertex. This path will be referred to as external lines on it. For example, the diagram of Fi¢d)8
themain line Now, any diagram that includes an exceptionalhas external lines coming off different interaction vertices
contraction, such as the diagram of Figa)3 will be small  and vanishes if the two lines are close in momentum.
for low momenta, since th&(k) leaving such a diagram All that remains is to justify the neglect of six- and
will have only a small range over which to integrate. For Fig.higher-point functions, such as could appear from the dia-
8(a) the main line is given by following the horizontal arrow gram in Fig. &e). If we wish to calculate a correlation func-
along the bottom of the diagram from left to right, through tion of four G(j) and somewhere in one diagrammatic cal-
thet vertex, until it bends up and left. Then go down and leftculation we have a six-point function, some of the lines
through the noise contraction into the@ertex and then leave leaving the six-point function must be contracted against
thet vertex along the line going up and left. Follow this line each other. Then somewhere in the diagram for the correla-
through its bend back to the right until it leaves the diagramtion is a contribution to the four-point function that includes
The smallness, of the contribution &5 given in Fig.  the six-point function within it. Therefore, the renormaliza-
8(a), for small momenta does not completely justify the ne-tion procedure would have yielded this contribution to the
glect of such terms. For example, when evaluating the RGour-point function as a change inBut, we have already, as
contribution tot, the value ofs®f used iss®(A), not the outlined above, obtained all the contributions to the change
low-momentuns®™, and thus a high-momentum contribution in t. Therefore, there is no such diagram.
to s*™ may change the low-momentum renormalizetiow- Finally, the lowest-order contributions considered in Sec.
ever, even for a calculation af(A), the exceptional con- V A have a certain universality; considering only the dia-
traction will mean some reduction in available phase spacgrams of that subsection, the nature of the fixed point does
over which to integrate. not depend on the initial form df(j,k). Higher-order RG
One may check that contributions 8"(j) such as the contributions will depend on the initial form afj,k).
third example in Fig. 8 will always vanish, regardless of
whatj is, due to thed functions in Eqs(35) and (45). The VI. FRACTAL DIMENSION
lines coming off oft vertices connected to the main line must AND MULTIFRACTAL EXPONENTS
be contracted within themselves, not between different ver-
tices. In this diagram, the main line is simply the entire hori-
zontal arrow running along the bottom of the diagram. Thus
the only contribution te®" will be the contribution of Fig. 6.
For contributions td(0), we maydefine two main lines.
One can follow the main line of th&(l) or the main line of
the G* (m). These are the lines one follows if one starts on
the line for G(l) or for G*(m) and follows through the
various contractions as defined above. These two lines join . : L
some point in a noise contraction. exponents from correlation functions is given.

The second example of Fig. 8 has an exceptional contrac- In any actual simu!ation, there is an ultraviolet (?Utm
tion and may be ignored. The main line starting with thedetermlned by the ratio of the macroscale to the microscale.

G(l) line leaving the circled vertex proceeds up and left, In the RG, a power-law decay was found f8(j). Since the

then turns right, going straight across the diagram to the en G Qescr|b§es a fixed point in the SC?"”Q region, W.'th.'n the
Then it turns down and left, up and left through an excep- G itself th'.s power Iavv_ holds for arb|tr_ar|Iy_Iar_ge Within
tional contraction into & vertex. Then it goes down and left an a(r:ltuaIAs!mur:atlon t#'sprowgrS law V;"." faf|l at Orf] o;dg:-r
into a noise contraction, where it ends. The main line starting®: WhereA is the cutoff of Eq(25) resulting from the finite

with G*(m) starts at the circled vertex and proceeds up ize of the cluster in the simulation. Thus, in the calculation

and right until it terminates at the noise contraction. Figuremc exponents that follows, although all correlation functions

8(b) is similar to Fig. Tb), except an additional vertex has are calculated using the rules of the RG and of perturbation

been added to the diagram. If this vertex were removed, thi@eory' the integrals over correlations functions that we wil
diagram would be small for small external momenta. WithUS€ must be cut off at momenta of ordey as will be done..
thet vertex on the diagram, the diagram is very difficult to . Since the size of the object follows a power-law behavior
evaluate since to evaluate it requires a knowledge of ap'ven by

t(j,k), not _justt(A,A)._ However, the diagram is not only FoctiP, (63)
next order in the coupling constant, but also small due to the

various exponentials present, as may be verified. Any diawhereD is the radius of gyration dimensions of the object,
gram fort with such an exceptional contraction will have the we have

same problems. That is why we will ignore them.

If the main line of theG*(m) has lines leaving it that din(Fy)
contract against lines leaving the main line@fl) then the T
diagram will again vanish due to the functions. A contri-
bution tot cannot have both external lines leaving the mainAs a side point, strictly speaking this requires tiddt, /dt
line of G* (m). Therefore both lines must leave the main line can be replaced by the derivative of the average value of

It is now possible to begin extracting exponents of the
original DLA model. Different exponents correspond to dif-
ferent correlation functions of this model; it will be the pur-
pose of this section to determine how to compute exponents
from correlation functions. This process depends on the dis-
cussion of the adiabatic assumption and the assumption used
to introduce the cutoff into the continuum equation. From
élgose assumptions an unambiguous means of determining

(64)
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F,, but both numerical evidence and the RG flow of fre-

guency resulting from Ed62) justify this assumption. How- a)

ever, AV >
/' \

where(\) is defined to be the average value)ofover the >< —>-

unit circle at a given time. Equatiai®5) may be derived by
using Eq.(14) to calculatedG,/dt and then Eq.(26) to
relate this todF, /dt. Combining Eqs(64) and(65) we get

(\)ec 1. (66)

Equation(66) is equivalent to the electrostatic scaling law
derived by Halsey[5]. In the continuum approximation,
(Ny=[dj{G(j)G*(j)). Here it must be understood that b)
while in the perturbation theory this expression is formally
infinite, since (G(j)G*(j))=8(0)|G?(j)|ay, in the above

average we remove this factor 6{0) [17]. Calling D the

fractal dimension,

A
FIDxlltoc<)\>ocG%j djj72/504:;2/\3/535':;2':?/10. - \/ N
(67) A
This gives the result that FIG. 9. (a) Simplest diagram for the correlation function needed
to computer(5). Theexternal lines are the vario(j),G* (k) in
D=2-1/2+1/5=1.7. (68) the correlation function(b) Tree diagram for the same correlation
function.

The first proportionality in Eq(67) followed from the
radius of gyration definition of the dimension. The secondsurface of the object. If all the terms in this integral contrib-
followed from the electrostatic scaling law. The third fol- uted with the same phase, the integral would scale as
lowed from the expression fain) in terms of G and from A ~#5"3_ Of course, the terms are independent and this mis-
the scaling ofG derived in the RG. The fourth followed from estimates the exponent. It is necessary to use the perturbation
Eq. (26) and from doing the integral. The fifth followed from theory to evaluate the four-point correlation function. The
the functional dependence &f on F; as given by Eq(25). simplest possibility is to us&' as an estimate for all the
This is the simplest way to derive the fractal dimensionG in Eq.(70). The diagram for this is shown in Fig(8. The
from the above work. The calculation of the growth rateonly terms that would then contribute would be whelGa

7(q)=Ilim
|—0

from Eq. (66) is essentially a determination of the unrenor-and aG* were at the same momentum and the integral
malized, unrescales in Eq. (35). It may also be possible to would scale as\~#5"2. The different scaling results from
repeat the same result by using the rescaling ohder the  having a different number of momenta to integrate over. An-
RG to obtain the rescaling of the growth rate under a shift inother possibility(this is analogous to a tree approximation
A. for a scattering problejris to substitute for the highest mo-

The multifractal exponents(q) are defined by mentumG in terms of at vertex, leaving a six-point corre-

lation function, and then take all si®,G* to be G'. The
|n(2 E(i) / In(1) (69  scaling is then a$‘6’5+3. The diagram for this is shown in
i Fig. 9b). Since this scales more strongly with, it will be
dominant in the limit needed to computéq).

where the surface of the cluster is covered with intervals of The following is the rule for calculating multifractal ex-
lengthl andE“(i) is the integral along thith interval of the  ponents. Letn be a positive integer. Calculate the integral
gth power of the electric field. Numerical calculations of over Zr-point correlation functions defined by
these exponents can be found in Réi,1§.

One can try to compute higher multifractal exponents us-(A (A A (A A
ing the RG[the work above amounts to computin¢3) and f djp | diz- f djnf dklf dky---
showing thaD = 7(3)]. For example, the scaling af5) can N
be determined by calculating the scaling of XJ dky(G(j1)G(j2)- - - G(j ) G* (k) G* (ky) - - - G*
A
f djdkdldm(G(j)G(k)G* (1)G*(m))&(j +k—1—m) X(k)YS(jrtjot - +jn—ki—ko—---—ky). (71
(70)

If this integral behaves, in the limit ok —«, asA?, where
against the upper cutoff. This is because the given integral a is some number, them(2n+1)=2n—a/2. The factor
is equal to the desired power of the field integrated over th&n is the trivial scaling that would result even for a nonfrac-
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tal object; the factom/2 results from the dependence &n
and from the square-root dependence\obn length scale.

In general, we can always find, fe{q), a tree diagram o012 o
that scales like\ ~2(A=2/5+(a=2) Then

(Q)=(q—1) -1 -2(q—2)/5+(q—2)]. (72

[ 0.011

é Fo.0t

Alternately, another definition of exponents is 'S DD
% I 0.009 =

Dq=7(a)/(q=1). 73 35 o

‘> [0.008 a

Then L”q g
o @

D= @)(g-1)=1 q(1/2—-1/5—-1+2/5 (7 5
q— T q q - (q_ 1) I}
which is equivalent to
~0.7g-0.4
a g-1 (79 10 15 20 25 30
AO,G

VIl. COMPARISON WITH NUMERICS AND DISCUSSION

FIG. 10. Plot of scaling ok against cutoff, as described in the

The theory is compared with numerics and further tests OIext

the theory are proposed.

higher-point correlation functions. Fortunately, such multi-
point interaction terms are captive variables, in the sense that
In previous work we found that the alternate formulationif one knows the behavior of,t under RG flow one may
of DLA using analytic functiong6] produces clusters with systematically determine the higher interaction terms that
appearance and dimension similar to those of clusters growwill appear. Fourth, the above derivation of multifractal ex-
using the lattice formulation of DLA. As far as we can tell, ponents involved expressing the exponent in terms of corre-
the two formulations are equivalent when=2. lation functions; this is possible only for odd multifractal
The simplest comparison with numerics is the dimensiorexponents. Thus, in fact, it is not possible to say anything
itself. The value 1.7 is very close to the accepted value oabout even exponents in any simple fashion.
1.71. Additionally, there exist some difficulties in numerical
Equation (75) for higher multifractal exponents is the calculation of higher multifractal exponents. According to
same as the formula obtained with a wedge model by Halseghe branched growth theory of DLALG], the time required
et al. [10], except that the wedge model left the quantitiesto compute higher exponents is superexponential in the order
0.7 and 0.4 as unknown constants to be fitted to numericef the desired exponent. Thus the exact values of the larger
They define quantitie and «, the dimension of the set on exponents may not be given precisely by the numerical ex-
which the wedges exist, and the strength of the singularitperiments. This mathematical difficulty may be the source of
(hopefully, the reuse of the symbal will cause no confu- the controversy that appears to exist between the different
sion and show thaD,=(aq—f)/(q—1). A numerical fit numerical calculations of these exponents. For example, the
gave a=0.705,f=0.42, while a comparison with E¢75  value quoted forr(3) by Ball and Rath is less than 1.6,
gives «=0.7, f=0.4. It is now known that such a simple which is definitely at odds with the electrostatic scaling law
scaling law is not valid for largg [18], and in the original (believed to be exact from various numerical calculations
paper of Halsewt al. it was suspected that such a law would and with other numerical calculations of this exponent. The
not hold. electrostatic scaling law says thg3)=D=1.71. There also
The possible difference between theory and experimengxists controversy about the precise value of the dimension
here for largeq should not be construed as a flaw in the of DLA, as mentioned in Ref2]. Thus, in fact, it is not clear
presented work. First, the above calculation is only a lowestexactly how large the discrepancy between the above results
order calculation. To higher orders, we may find a form forand the numerical results is.
t(j,k) that has nontrivial behavior. This may alter the results It is also of interest to check numerically the scaling of
from the tree approximation to the correlation function usedG(j). This was checked for two cases: first, for a single
to compute the exponents. Second, we may find interestingluster as described in the next paragraph, and second, for an
behavior if we consider other contributions to the correlationensemble of clusters as described in the paragraph after that.
exponents, beyond the tree diagrams used above. Third, al- When [djG(j)G* (j)e /" is plotted againsh ®¢, where
though the neglect of the appearance of the six-point funcin reality the integral is a discrete sum, one expects to find a
tion was valid when considering the renormalization flow of straight-line behavior. This is what is found, as shown in Fig.
s andt, as discussed in reference to Fige)@such a neglect 10, except that for largé the curve flattens out, since the
is not valid if one actually wishes to compute six- and numerical calculation included only a finite number of terms.

A. Comparison with numerics
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proximations were made that produced a modified
continuum equation of motion; it is hoped that such an equa-
tion describes DLA, but even if it does not, it does describe
some form of nontrivial Laplacian growth. A perturbation
theory was developed for this equation and resummed.
To determine various terms in the perturbation theory,
it was then necessary to use a renormalization-group
calculation. This has been carried out only to lowest order. It
is a peculiar feature of this method that next-order calcula-
tions are vastly more difficult than lowest-order calculations;
thus, as yet, there is no analytic calculation of higher-order
effects. Finally, the assumptions leading to the modified
model were reversed, leading to calculations of quantities
for DLA.

It would be worthwhile to look more closely at higher-
order corrections, if not analytically, at least qualitatively, to
see what may happen. To lowest ord€j,— k) flows to an
everywhere positive function. Using the lowest ordeto
compute the effect of higher-order corrections will tend to
lower the value for the dimension predicted by this theory.
However, it is possible that in a more careful next-order

FIG. 11. Plot of scaling of the logarithm of the mean square ofcalculation, the interactiot(j — k) flows to a function tht is
G(j) against the logarithm off, as described in the text. negative for largg — k, possibly increasing the predicted di-

mension. As mentioned above, next-order effects depend in
| Some way upon the initial functional form ofj,k). Lowest-
order effects do not.

In ((IGG)P/1G(0)1%)

Also for smallA, the curve flattens out &; 2, which, in the
long-time limit, is vanishingly small compared to the ful
integral. For the finite cluster size of our simulatidt, 2 is

not negligible. The clusters here were grown using the con- Unfgrtunately,_ it is not possible to carry out a stability
formal mapping technique outlined previously. The coeffi-analysis of the fixed point of the lowest-order RG. All that

cients ofG were computed with a numerical Fourier trans- MY be said from the above calculation is that if a fixed point
form, by mapping a large number of points on the surface ofXISts, other than a trivial fixed point for whidhgoes to
the circle(in fact, slightly outside the circle, to improve nu- Z€ro, then this fixed point is described by this RG.
merical behavi@r to the surface of the aggregd]ngain’ to It would also be worthwhile to try to extend this technlque
slightly outside the surface of the aggregatad analytically ~to other Laplacian growth models, such as the dielectric
calculating the derivative of the mapping for each point. Thisbreakdown model. For the dielectric breakdown mddé,
technique is not very efficient for growing large clusters, atdifferent values ofy correspond, in the continuum limit, to
least as presently implemented. It requi@gN?) time to  different values ofa in the conformal mapping model of
computeN growth steps, but it is very easy to calculate Sec. Il A. The difference between the dielectric breakdown
coefficients ofG using this program. | used only aggregatesmodel and our model is that, away from the DLA case, our
of around 7000-10 000 walkers. model uses the same growth probability over the surface and
As another check, 50 clusters of 6000 steps were simuvarying walker size, while the dielectric breakdown uses a
lated, and for each cluster, the coefficientsfvere com-  varying growth probability and constant walker size. Al-
puted. The squares of these coefficients were scaled kyough this alters the scale of the cluster in our case, we
G(0), theoverall inverse cluster size, and then averaged toyould expect the fractal dimension of the cluster grown at a
gether. In Fig. 11 the mean squares ®{j) are plotted  given o with the conformal model to be the same as the
againstj on a log-log plot. Numerical difficulties made it gimension obtained from the dielectric breakdown model
|mp053|t_)le to _accurat_ely extract the_ slope in the scaling reyith n=a—1.
gion. This scaling region extends frops 5 to j =35 or from One might naively try to apply the technique above to the

In(j)=1.6 to In()=3.5. Theory predicts that this slope is . ; :
2/(51)=O.4. The nqu)merical slopeyispbetween 0.3 and 0.5p usingooe ofe different from 2, by replacing Eq(1) with the

a least-squares fit. The theory line is drawn onto the grapt?.jenn't'onez F a/_z and using an equation of motion similar
As an additional check, another ensemble of clusters wa® Ed: (35), with different initial t(j,k). This would lead to
simulated, with a differenth, and a different number of physically absurd results and is in fact different from defin-
steps. Within the scaling region of that simulation, the slopd"d G=F,* and using a modified equation of motion as
of the mean squares behaved in the same fashion and, addiescribed in the next paragraph. The difference is in how the
tionally, the mean-square @(j), after scaling by cluster noise term is inserted. It is important for the perturbation
size, for givenj, was the statistically the same for the two theory that products d&" may be pairwise decomposed, and
simulations. this property means different things depending on whether
G=F,! or G=F,“2. In the stochastic problem, each
B. Discussion growth step produces a simple pole Bf ! inside the unit
A theory has been presented based on the conformal naircle; the angular coordinate of the pole is random and the
ture of various Laplacian growth processes. A series of apradial coordinate is determined Ry In the continuum limit
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of Sec. Il E, the angular coordinate becomes the real value dhe Eq.(1) is the best definition o6.

0, while the radial coordinate becomes the imaginary value Onecanhandle the case af different from 2 by using a
of #; the interior of the unit circle is replaced by the lower modified equation of motion, although this may be difficult if
half plane. One may show, using Cauchy's theorem, that is not even. One would modify Eq35) by including
randomly insertingsimplepoles produces a pairwise decom- higher powers ofs in the interaction term. For example, for
position property for the random noise F, *. Therefore, a=4, the interaction term would be of the form

(1/,;)[ dkt(j,k)G(k)f fdIdmdndoCﬁI)G*(m)G(n)G*(o)exq—(l+m+n+o)/A]6(k+I+n—m—j—o)20(j—k).
(76)
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